【hdu3652】B-number 数位DP

  B-number

Problem Description

A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.

Input

Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).

Output

Print each answer in a single line.

Sample Input

13

100

200

1000

Sample Output

1

1

2

2

题意:求n以内所有能被13整除且数字里包含13的数的个数

题解:数位DP,用f[i][j][k]表示有i位,最高位为j,对13取模等于k,且数字里包含13的数的个数,g[i][j][k]表示有i位,最高位为j,对13取模等于k,且数字里包含13的数的个数。

  然后一位一位判断就可以了。

代码

#include <stdio.h>
#include <string.h>
int n,m;
int v[20];
int f[12][10][13],g[12][10][13],t[12];
int main()
{
    int i,j,k,l,ans,rem,x;
    t[1]=1;
    for(i=2;i<=10;i++)    t[i]=t[i-1]*10;
    for(i=0;i<=9;i++)    g[1][i][i]=1;
    for(i=2;i<=10;i++)
    {
        for(j=0;j<=9;j++)
        {
            for(k=0;k<=9;k++)
            {
                for(l=0;l<=12;l++)
                {
                    if(j==1&&k==3)
                    {
                        f[i][j][l]+=(j*t[i]+(k+1)*t[i-1]-1-l)/13-(j*t[i]+k*t[i-1]-1-l)/13;
                    }
                    else
                    {
                        f[i][j][l]+=f[i-1][k][((l-j*t[i])%13+13)%13];
                        g[i][j][l]+=g[i-1][k][((l-j*t[i])%13+13)%13];
                    }
                }
            }
        }
    }
    while(scanf("%d",&n)!=EOF)
    {
        memset(v,0,sizeof(v));
        rem=m=ans=0;  //此时答案的后i位对13取模应该等于rem
        x=n;
        while(x)
        {
            v[++m]=x%10;
            x/=10;
        }
        for(i=m;i>=1;i--)
        {
            for(j=0;j<v[i];j++)    ans+=f[i][j][rem];
            if(v[i]>3&&v[i+1]==1)
            {
                ans+=g[i][3][rem];
            }
            if(v[i]==3&&v[i+1]==1)
            {
                ans+=n/13-(n/t[i]*t[i]-1)/13;
                break;
            }
            rem=((rem-v[i]*t[i])%13+13)%13;
        }
        printf("%d\n",ans);
    }
    return 0;
}
时间: 2024-10-16 07:06:17

【hdu3652】B-number 数位DP的相关文章

Hdu3079Balanced Number数位dp

枚举支点,然后就搞,记录之前的点的力矩和. #include <cstdio> #include <cstring> #include <algorithm> #include <climits> #include <string> #include <iostream> #include <map> #include <cstdlib> #include <list> #include <s

SPOJ MYQ10 Mirror Number 数位dp&#39;

题目链接:点击打开链接 MYQ10 - Mirror Number A number is called a Mirror number if on lateral inversion, it gives the same number i.e it looks the same in a mirror. For example 101 is a mirror number while 100 is not. Given two numbers a and b, find the number

多校5 HDU5787 K-wolf Number 数位DP

1 // 多校5 HDU5787 K-wolf Number 数位DP 2 // dp[pos][a][b][c][d][f] 当前在pos,前四个数分别是a b c d 3 // f 用作标记,当现在枚举的数小于之前的数时,就不用判断i与dig[pos]的大小 4 // 整体来说就,按位往后移动,每次添加后形成的数都小于之前的数,并且相邻k位不一样,一直深搜到cnt位 5 // http://blog.csdn.net/weizhuwyzc000/article/details/5209769

hdu 5898 odd-even number 数位DP

odd-even number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 716    Accepted Submission(s): 385 Problem Description For a number,if the length of continuous odd digits is even and the length

hdu 5787 K-wolf Number 数位dp

数位DP 神模板 详解 为了方便自己参看,我把代码复制过来吧 // pos = 当前处理的位置(一般从高位到低位) // pre = 上一个位的数字(更高的那一位) // status = 要达到的状态,如果为1则可以认为找到了答案,到时候用来返回, // 给计数器+1. // limit = 是否受限,也即当前处理这位能否随便取值.如567,当前处理6这位, // 如果前面取的是4,则当前这位可以取0-9.如果前面取的5,那么当前 // 这位就不能随便取,不然会超出这个数的范围,所以如果前面取

codeforces Hill Number 数位dp

http://www.codeforces.com/gym/100827/attachments Hill Number Time Limits:  5000 MS   Memory Limits:  200000 KB 64-bit interger IO format:  %lld   Java class name:  Main Description A Hill Number is a number whose digits possibly rise and then possibl

fzu 2109 Mountain Number 数位DP

题目链接:http://acm.fzu.edu.cn/problem.php?pid=2109 题意: 如果一个>0的整数x,满足a[2*i+1] >= a[2*i]和a[2*i+2],则这个数为Mountain Number. 给出L, R,求区间[L, R]有多少个Mountain Number. 思路: 数位DP,判断当前是偶数位还是奇数位(从0开始),如果是偶数位,那么它要比前一个数的值小, 如果是奇数位,那么它要比前一个数的值大. 1 #include <iostream>

hdu3709---Balanced Number(数位dp)

Problem Description A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. More specifically, imagine each digit as a box with weight indicated by the digit. When a pivot is placed at some digit of the nu

HDU 3709 Balanced Number (数位DP)

Balanced Number Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 3798    Accepted Submission(s): 1772 Problem Description A balanced number is a non-negative integer that can be balanced if a pi

hdu 5898 odd-even number(数位dp)

Problem Description For a number,if the length of continuous odd digits is even and the length of continuous even digits is odd,we call it odd-even number.Now we want to know the amount of odd-even number between L,R(1<=L<=R<= 9*10^18). Input Fir