【Android开发经验】DES加密时代的终结者——AES加密算法

转载请注明出处:http://blog.csdn.net/zhaokaiqiang1992

在前面的两篇文章中,我们介绍了DES算法,3DES算法以及他们的Android程序实现,并研究了如何才能实现不同平台下加密算法的一致性。不过话说起来,DES算法是在1976年被美国的国家标准局定为联邦资料的加密标准的,到现在已经接近40年了。我们都知道,在计算机的世界里有一个摩尔定律,就是每过18个月,计算机的晶体管的数量就会翻一番,对应的计算速度也会翻倍,虽然现在的发展速度有所放缓,但是每过三年左右,计算机的运算速度还是在翻倍的增长。DES采用的是56的加密密钥,在计算机计算能力飞速发展的今天,已经不再安全,经过算法优化的暴力破解方式能在一天之内就将DES密钥破解,因此,DES加密只推荐使用在加密等级不高的场景中。既然DES加密算法不再安全,那么有没有更加强大的加密算法呢?当然有!今天给大家介绍的,就是如今被金融机构等对安全性要求等级很高的机构所广泛应用的加密算法——AES加密。

高级加密标准(英语:Advanced Encryption Standard,缩写:AES),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。

严格地说,AES和Rijndael加密法并不完全一样(虽然在实际应用中二者可以互换),因为Rijndael加密法可以支持更大范围的区块和密钥长度:AES的区块长度固定为128 比特,密钥长度则可以是128,192或256比特;而Rijndael使用的密钥和区块长度可以是32位的整数倍,以128位为下限,256比特为上限。加密过程中使用的密钥是由Rijndael密钥生成方案产生。

截至2006年,针对AES唯一的成功攻击是旁道攻击。美国国家安全局审核了所有的参与竞选AES的最终入围者(包括Rijndael),认为他们均能够满足美国政府传递非机密文件的安全需要。2003年6月,美国政府宣布AES可以用于加密机密文件。这标志着,由美国国家安全局NSA批准在最高机密信息上使用的加密系统首次可以被公开使用。许多大众化产品只使用128位密钥当作默认值;由于最高机密文件的加密系统必须保证数十年以上的安全性,故推测NSA可能认为128位太短,才以更长的密钥长度为最高机密的加密保留了安全空间。
    通常破解一个区块加密系统最常见的方式,是先对其较弱版本(加密循环次数较少)尝试各种攻击。AES中128位密钥版本有10个加密循环,192比特密钥版本有12个加密循环,256比特密钥版本则有14个加密循环。至2006年为止,最著名的攻击是针对AES 7次加密循环的128位密钥版本,8次加密循环的192比特密钥版本,和9次加密循环的256比特密钥版本所作的攻击。

因此,在当前阶段来说,AES加密是非常安全的,因此可以用来对我们的敏感数据进行加密,下面给出android平台下AES加密的代码实现。

需要注意的是,在4.2以上的版本中,SecureRandom实例的获取方式发生了变化,因此为了兼容高版本,添加了版本判断。

package com.example.androiddemo;

import java.security.SecureRandom;

import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;

import android.annotation.SuppressLint;

/**
 *
 * @ClassName: com.example.androiddemo.AESUtil
 * @Description: AES加密解密工具类
 * @author zhaokaiqiang
 * @date 2014-11-15 上午10:08:44
 *
 */
@SuppressLint("TrulyRandom")
public class AESUtil {

	private final static String HEX = "0123456789ABCDEF";
	private final static int JELLY_BEAN_4_2 = 17;

	/**
	 * 加密
	 *
	 * @param key
	 *            密钥
	 * @param src
	 *            加密文本
	 * @return
	 * @throws Exception
	 */
	public static String encrypt(String key, String src) throws Exception {
		byte[] rawKey = getRawKey(key.getBytes());
		byte[] result = encrypt(rawKey, src.getBytes());
		return toHex(result);
	}

	/**
	 * 解密
	 *
	 * @param key
	 *            密钥
	 * @param encrypted
	 *            待揭秘文本
	 * @return
	 * @throws Exception
	 */
	public static String decrypt(String key, String encrypted) throws Exception {
		byte[] rawKey = getRawKey(key.getBytes());
		byte[] enc = toByte(encrypted);
		byte[] result = decrypt(rawKey, enc);
		return new String(result);
	}

	/**
	 * 获取256位的加密密钥
	 *
	 * @param seed
	 * @return
	 * @throws Exception
	 */
	@SuppressLint("TrulyRandom")
	private static byte[] getRawKey(byte[] seed) throws Exception {
		KeyGenerator kgen = KeyGenerator.getInstance("AES");
		SecureRandom sr = null;
		// 在4.2以上版本中,SecureRandom获取方式发生了改变
		if (android.os.Build.VERSION.SDK_INT >= JELLY_BEAN_4_2) {
			sr = SecureRandom.getInstance("SHA1PRNG", "Crypto");
		} else {
			sr = SecureRandom.getInstance("SHA1PRNG");
		}
		sr.setSeed(seed);
		// 256 bits or 128 bits,192bits
		kgen.init(256, sr);
		SecretKey skey = kgen.generateKey();
		byte[] raw = skey.getEncoded();
		return raw;
	}

	/**
	 * 真正的加密过程
	 *
	 * @param key
	 * @param src
	 * @return
	 * @throws Exception
	 */
	private static byte[] encrypt(byte[] key, byte[] src) throws Exception {
		SecretKeySpec skeySpec = new SecretKeySpec(key, "AES");
		Cipher cipher = Cipher.getInstance("AES");
		cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
		byte[] encrypted = cipher.doFinal(src);
		return encrypted;
	}

	/**
	 * 真正的解密过程
	 *
	 * @param key
	 * @param encrypted
	 * @return
	 * @throws Exception
	 */
	private static byte[] decrypt(byte[] key, byte[] encrypted)
			throws Exception {
		SecretKeySpec skeySpec = new SecretKeySpec(key, "AES");
		Cipher cipher = Cipher.getInstance("AES");
		cipher.init(Cipher.DECRYPT_MODE, skeySpec);
		byte[] decrypted = cipher.doFinal(encrypted);
		return decrypted;
	}

	public static String toHex(String txt) {
		return toHex(txt.getBytes());
	}

	public static String fromHex(String hex) {
		return new String(toByte(hex));
	}

	public static byte[] toByte(String hexString) {
		int len = hexString.length() / 2;
		byte[] result = new byte[len];
		for (int i = 0; i < len; i++)
			result[i] = Integer.valueOf(hexString.substring(2 * i, 2 * i + 2),
					16).byteValue();
		return result;
	}

	public static String toHex(byte[] buf) {
		if (buf == null)
			return "";
		StringBuffer result = new StringBuffer(2 * buf.length);
		for (int i = 0; i < buf.length; i++) {
			appendHex(result, buf[i]);
		}
		return result.toString();
	}

	private static void appendHex(StringBuffer sb, byte b) {
		sb.append(HEX.charAt((b >> 4) & 0x0f)).append(HEX.charAt(b & 0x0f));
	}
}
时间: 2024-10-08 14:47:13

【Android开发经验】DES加密时代的终结者——AES加密算法的相关文章

【Android开发经验】如何保证Android与服务器的DES加密保持一致

转载请注明出处:http://blog.csdn.net/zhaokaiqiang1992 在我们的应用程序涉及到比较敏感的数据的时候,我们通常会对数据进行简单的加密.在与服务器之间的数据交互中,除了可以使用post请求来增强数据的安全性之外,我们可以使用常见的加密算法,对数据进行加密.今天主要介绍的是DES加密算法. 首先,DES属于一种对称的加密算法,所谓对称,就是说加密和解密使用的都是同一个密钥,那么在我们实际应用的时候,就是指服务器和客户端进行加密解密的时候,使用的是一个相同的密钥.除此

【Android开发经验】比DES加密更安全的算法——3DES加密算法

转载请注明出处:http://blog.csdn.net/zhaokaiqiang1992 在前面的文章里面,我们讨论了DES算法,同时也明白了如何才能保证不同平台下的加密和解密结果的一致性.但是DES作为出现了很长时间的一种加密算法,随着计算机运算能力的加强,DES加密容易被暴力破解,其安全性变得有点低.于是,为了增强数据的安全性,3DES算法就应运而生了. 3DES,顾名思义,就是对DES加密算法的改进,3DES通过对每个数据进行3次DES加密,从而降低被破解的可能性. 如果我们要使用3DE

关于 Des加密(Android与ios 与后台java服务器之间的加密解密)

关于 Des加密(Android与ios  与后台java服务器之间的加密解密) http://blog.sina.com.cn/s/blog_7c8dc2d50101id91.html (2013-04-17 11:47:23)   分类: iPhone开发 最近做了一个移动项目,是有服务器和客户端类型的项目,客户端是要登录才行的,登录的密码要用DES加密,服务器是用Java开发的,客户端要同时支持多平台(Android.iOS),在处理iOS的DES加密的时候遇到了一些问题,起初怎么调都调不

C#实现DES加密解密,AES加密解密

DES算法描述简介: DES是Data Encryption Standard(数据加密标准)的缩写.它是由IBM公司研制的一种加密算法,美国国家标准局于1977年公布把它作为非机要部门使用的数据加密标准:它是一个分组加密算法,他以64位为分组对数据加密.同时DES也是一个对称算法:加密和解密用的是同一个算法.它的密匙长度是56位(因为每个第8 位都用作奇偶校验),密匙可以是任意的56位的数,而且可以任意时候改变. /// <summary>   /// DES加密   /// </su

【Android工具类】怎样保证Android与server的DES加密保持一致

转载请注明出处:http://blog.csdn.net/zhaokaiqiang1992 在我们的应用程序涉及到比較敏感的数据的时候,我们一般会对数据进行简单的加密.在与server之间的数据交互中,除了能够使用post请求来增强数据的安全性之外.我们能够使用常见的加密算法.对数据进行加密. 今天主要介绍的是DES加密算法. 首先.DES属于一种对称的加密算法,所谓对称.就是说加密和解密使用的都是同一个密钥,那么在我们实际应用的时候,就是指server和client进行加密解密的时候.使用的是

Android 加密/解密音频文件(AES)

加密过程:以byte[]形式读取SD卡上准备好的测试音频文件,使用AES加密算法加密byte[],再保存覆盖原音频文件,此时加密后的音频文件无法被播放.解密和加密过程原理一样,解密保存后的音频文件可以被播放. 代码: VoiceEncryptionActivity.java package com.example.voiceencryption; import java.io.File; import java.io.FileInputStream; import java.io.FileNot

Android客户端与服务器端通过DES加密认证

转载地址:http://blog.csdn.net/spring21st/article/details/6730283 由于Android应用没有像web开发中的session机制,所以采用PHPSESSID的方式,是没有办法获取客户端登录状态的. 这种情况下,如何在用户登录后,服务器端获取用户登录状态并保持,就必须采用一种“握手”的方式. 每个手机都有自己的IMEI号,那么能不能通过这个标识去做认证呢? 经过试验,答案是可以! 客户端在请求服务器端的时候,请求参数为 IMEI (param

Android 平台DES IV 加密解密随笔

好记性不如烂笔头,所以开始写博客了.一方面加深自己的理解,二方面给后面初学者少走弯路,不论难易,有些东西可能理解的不深,欢迎各位高手指导赐教加吐槽! DES加密接触过好多次了,但总容易忘,和服务器交互时,加出来不一致后面能解密成功但是头部是乱码导致小坑了一会,在此记录下来~ 根据百度百科和自己的理解,DES是一个基于56位密钥的对称的加密算法,就是两边的密钥需要一致,在此就不考虑为什么不用安全性更高的AES或者采用非对称加密方法,比如RSA等等:关于密钥空间小,可以使用DES的派生算法3DES来

DES加密解密与AES加密解密

目录 [1]AES加密算法和DES加密算法的效率比较[2]AES和DES加密解密代码 随着开发时间的变长,当初认为比较难的东西,现在渐渐也就变的不那么难了!特别对于一些经常很少使用的类,时间长了之后渐渐就陌生了.所以在这里写一些日后可能会用到的加密与解密. 一.AES加密算法和DES加密算法的效率比较: 下面是在网上看到的一段关于“ES加密程序和一个AES加密程序,比较两个程序进行大文件加密的效率”: 实验步骤: 实验结果: 结果分析: 当文件很小时,两个程序加密的时间差不多.但是当文件变大时,