MongDB的MapReduce相当于MySQL中的“group by”,所以在MongoDB上使用Map/Reduce进行并行“统计”很容易。
使用MapReduce要实现两个函数Map函数和Reduce函数,Map函数调用emit(key,value),遍历collection中的所有记录,将key和value传递给Reduce函数进行处理。Map函数和Reduce函数可以使用JS来实现,可以通过db.runCommand或mapReduce命令来执行一个MapReduce操作。
示例shell
db.runCommand( { mapreduce : <collection>, map : <mapfunction>, reduce : <reducefunction> [, query : <query filter object>] [, sort : <sorts the input objects using this key. Useful for optimization, like sorting by the emit key for fewer reduces>] [, limit : <number of objects to return from collection>] [, out : <see output options below>] [, keeptemp: <true|false>] [, finalize : <finalizefunction>] [, scope : <object where fields go into javascript global scope >] [, verbose : true] } );
参数说明:
mapreduce: 要操作的目标集合。
map: 映射函数 (生成键值对序列,作为 reduce 函数参数)。
reduce: 统计函数。
query: 目标记录过滤。
sort: 目标记录排序。
limit: 限制目标记录数量。
out: 统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)。
keeptemp: 是否保留临时集合。
finalize: 最终处理函数 (对 reduce 返回结果进行最终整理后存入结果集合)。
scope: 向 map、reduce、finalize 导入外部变量。
verbose: 显示详细的时间统计信息。
下面我们准备数据以备后面示例所需
> db.students.insert({classid:1, age:14, name:‘Tom‘}) > db.students.insert({classid:1, age:12, name:‘Jacky‘}) > db.students.insert({classid:2, age:16, name:‘Lily‘}) > db.students.insert({classid:2, age:9, name:‘Tony‘}) > db.students.insert({classid:2, age:19, name:‘Harry‘}) > db.students.insert({classid:2, age:13, name:‘Vincent‘}) > db.students.insert({classid:1, age:14, name:‘Bill‘}) > db.students.insert({classid:2, age:17, name:‘Bruce‘}) >
现在我们演示如何统计1班和2班的学生数量
Map 函数必须调用 emit(key, value) 返回键值对,使用 this 访问当前待处理的 Document。
这里this一定不能忘了!!!
> m = function() { emit(this.classid, 1) } function () { emit(this.classid, 1); } >
value 可以使用 JSON Object 传递 (支持多个属性值)。例如:
emit(this.classid, {count:1})
Reduce 函数接收的参数类似 Group 效果,将 Map 返回的键值序列组合成 { key, [value1,value2, value3, value...] } 传递给 reduce。
> r = function(key, values) { ... var x = 0; ... values.forEach(function(v) { x += v }); ... return x; ... } function (key, values) { var x = 0; values.forEach(function (v) {x += v;}); return x; } >
Reduce 函数对这些 values 进行 "统计" 操作,返回结果可以使用 JSON Object。
结果如下:
> res = db.runCommand({ ... mapreduce:"students", ... map:m, ... reduce:r, ... out:"students_res" ... }); { "result" : "students_res", "timeMillis" : 1587, "counts" : { "input" : 8, "emit" : 8, "output" : 2 }, "ok" : 1 } > db.students_res.find() { "_id" : 1, "value" : 3 } { "_id" : 2, "value" : 5 } >
mapReduce() 将结果存储在 "students_res" 表中。
利用 finalize() 我们可以对 reduce() 的结果做进一步处理。
> f = function(key, value) { return {classid:key, count:value}; } function (key, value) { return {classid:key, count:value}; } >
我们再重新计算一次,看看返回的结果:
> res = db.runCommand({ ... mapreduce:"students", ... map:m, ... reduce:r, ... out:"students_res", ... finalize:f ... }); { "result" : "students_res", "timeMillis" : 804, "counts" : { "input" : 8, "emit" : 8, "output" : 2 }, "ok" : 1 } > db.students_res.find() { "_id" : 1, "value" : { "classid" : 1, "count" : 3 } } { "_id" : 2, "value" : { "classid" : 2, "count" : 5 } } >
列名变与 “classid”和”count”了,这样的列表更容易理解。
我们还可以添加更多的控制细节。
> res = db.runCommand({ ... mapreduce:"students", ... map:m, ... reduce:r, ... out:"students_res", ... finalize:f, ... query:{age:{$lt:10}} ... }); { "result" : "students_res", "timeMillis" : 358, "counts" : { "input" : 1, "emit" : 1, "output" : 1 }, "ok" : 1 } > db.students_res.find(); { "_id" : 2, "value" : { "classid" : 2, "count" : 1 } } >
可以看到先进行了过滤,只取age<10 的数据,然后再进行统计,所以就没有1 班的统计数据了。