纹理特征提取【转】

一幅图像的纹理是在图像计算中经过量化的图像特征。图像纹理描述图像或其中小块的空间颜色分布和光强分布。

纹理特征的提取分为基于结构的方法和基于统计数据的方法。一个基于结构的纹理特征提取方法是将所要检测的纹理进行建模,在图像中搜索重复的模式。该方法对人工合成的纹理识别效果较好。但对于交通图像中的纹理识别,基于统计数据的方法效果较好。

1 LBP纹理特征

LBP(local binary patterns)是一个计算机视觉中用于图像特征分类的一个方法。LBP方法用于纹理特征提取。后来LBP方法与HOG特征分类器联合使用,改善了一些数据集上的检测效果。

对LBP特征向量进行提取的步骤如下:

首先将检测窗口划分为16×16的小区域(cell),对于每个cell中的一个像素,将其环形邻域内的8个点(也可以是环形邻域内的多个点)进行逆时针或者顺时针的比较,如果中心像素值比该邻域点大,则将邻点赋值为1,否则赋值为0,这样每个点都会获得一个八位二进制数(通常转换为十进制数)。然后计算每个cell的直方图,即每个数字(假定是十进制数)出现的频率(也就是一个关于每一个像素点是否比邻域内点大的一个二进制序列进行统计),然后对该直方图进行归一化处理。最后将得到的每个cell的统计直方图进行连接,就得到了整幅图像的LBP纹理特征,然后便可利用SVM或其他机器学习算法进行分类了。

2.灰度共生矩阵

灰度共生矩阵是另一种纹理特征提取方法,首先对于一幅图像定义一个方向(orientation)和一个以pixel为单位的步长(step),灰度共生矩阵T(N×N),则定义M(i,j)为灰度级为i和j的像素同时出现在一个点和沿所定义的方向跨度步长的点上的频率。其中N是灰度级划分数目。由于共生矩阵有方向和步长的组合定义,而决定频率的一个因素是对矩阵有贡献的像素数目,而这个数目要比总共数目少,且随着步长的增加而减少。因此所得到的共生矩阵是一个稀疏矩阵,所以灰度级划分N常常减少到8级。如在水平方向上计算左右方向上像素的共生矩阵,则为对称共生矩阵。类似的,如果仅考虑当前像素单方向(左或右)上的像素,则称为非对称共生矩阵。

转自:http://blog.csdn.net/abcjennifer/article/details/7425483

时间: 2024-12-12 13:17:27

纹理特征提取【转】的相关文章

医学CT图像特征提取算法--肺结节CT图像特征提取算法

摘自本人毕业论文<肺结节CT影像特征提取算法研究> 医学图像特征提取可以认为是基于图像内容提取必要特征,医学图像中需要什么特征基于研究需要,提取合适的特征.相对来说,医学图像特征提取要求更加高,因为对医生的辅助诊断起着至关重要的作用,所以需要严谨可靠的特征.肺结节CT影像特征提取也是属于医学图像特征提取领域的一个部分,有着医学图像特征提取的基本要求.既有其他医学图像特征提取的方法,也有针对肺结节的特定特征提取方法.本小节主要对一些常用的肺结节CT影像医学图像特征提取方法进行介绍,主要可以分为灰

图像特征提取三大法宝:HOG特征,LBP特征,Haar特征

(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM

【图像算法】图像特征:GLCM灰度共生矩阵,纹理特征

[图像算法]图像特征:GLCM SkySeraph Aug 27th 2011  HQU Email:[email protected]    QQ:452728574 Latest Modified Date:Aug 27th 2011 HQU ------------------------------------------------------------------------------------------------------------------------------

图像处理之图像特征提取之(二)LBP特征

LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子:它具有旋转不变性和灰度不变性等显著的优点.它是首先由T. Ojala, M.Pietik?inen, 和D. Harwood 在1994年提出,用于纹理特征提取.而且,提取的特征是图像的局部的纹理特征: 1.LBP特征的描述 原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0.这样,

LBP纹理特征[转自]

LBP方法(Local binary patterns)是一个计算机视觉中用于图像特征分类的一个方法.LBP方法在1994年首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 提出,用于纹理特征提取.后来LBP方法与HOG特征分类器联合使用,改善了一些数据集[45]上的检测效果. 对LBP特征向量进行提取的步骤如下: 首先将检测窗口划分为16×16的小区域(cell),对于每个cell中的一个像素,将其环形邻域内的B个点(也可以是环形邻域多个点,如下图,使用LBP算

【计算机视觉】LBP纹理特征

LBP简介 LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子:它具有旋转不变性和灰度不变性等显著的优点.它是首先由T. Ojala, M.Pietik?inen,和 D. Harwood 在1994年提出,用于纹理特征提取.而且,提取的特征是图像的局部的纹理特征. 从纹理分析的角度来看,图像上某个像素点的纹理特征,大多数情况下是指这个点和周围像素点的关系,即这个点和它的邻域内点的关系.从哪个角度对这种关系提取特征,就形成了不同种类的特征.有了特

目标检测的图像特征提取之(二)LBP特征

LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子:它具有旋转不变性和灰度不变性等显著的优点.它是首先由T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年提出,用于纹理特征提取.而且,提取的特征是图像的局部的纹理特征: 1.LBP特征的描述 原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0.这样,

灰度共生矩阵提取纹理特征源码

灰度共生矩阵提取纹理特征源码%**************************************************************************%                   图像检索——纹理特征%基于共生矩阵纹理特征提取,d=1,θ=0°,45°,90°,135°共四个矩阵%所用图像灰度级均为256%参考<基于颜色空间和纹理特征的图像检索>%function : T=Texture(Image) %Image    : 输入图像数据%T       

python实现gabor滤波器提取纹理特征 提取指静脉纹理特征 指静脉切割代码

参考博客:https://blog.csdn.net/xue_wenyuan/article/details/51533953 https://blog.csdn.net/jinshengtao/article/details/17797641 傅里叶变换是一种信号处理中的有力工具,可以帮助我们将图像从空域转换到频域,并提取到空域上不易提取的特征.但是经过傅里叶变换后, 图像在不同位置的频度特征往往混合在一起,但是Gabor滤波器却可以抽取空间局部频度特征,是一种有效的纹理检测工具. 在图像处理