Caffe 学习:Crop 层

  

  在Fully Convolutional Networks(FCN)中,会用到Crop 层,他的主要作用是进行裁切。下面我们举一个例子来说明如何使用Crop 层。

  Caffe中的数据是以 blobs形式存在的,blob是四维数据,即 (Batch size, number of Chennels, Height, Width)=(N, C, H, W)。---(0,1,2,3)

Crop层的输入(bottom blobs)有两个,让我们假设为A和B,输出(top)为C。

  • A是要进行裁切的bottom,他的size是 (20,50,512,512)
  • B是裁切的参考输入,他的size是(20,10,256,256)
  • C是输出(top blob),由A裁切而来,那么他的size是(20,10,256,256)

  

  在这个例子中,轴0的维度不变,我们只需要裁切blob的轴1,2,3,所以我们设置axis=1,代表我们将会裁切轴1和它之后的所有轴。

  有两个裁切模式:

模式1---给出3个offsets,每个针对一个dimension,offset=(25,128,128)

  • axis=1,offset=(25,128,128)
  • crop operation: C = A[: , 25: 25+B.shape[1] , 128: 128+B.shape[2] , 128: 128+B.shape[3] ]
  • 也就是说,对于A的轴1,对称裁切了25-35
  • 对称裁切:offset = (Original_length - desired length ) / 2

模式2---给出1个offset,适用于三个dimension,offset=25

  • 那么就相当于模式1 的 offset=(25,25,25)

  

  模式1的prototxt写法如下:

layer {
  name: "crop_layer"
  type: "Crop"
  bottom: "A"
  bottom: "B"
  top: "C"
  crop_param {
    axis: 1
    offset: 25
    offset: 128
    offset: 128
  }
}

  

时间: 2024-10-21 04:33:42

Caffe 学习:Crop 层的相关文章

转 Caffe学习系列(3):视觉层(Vision Layers)及参数

所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层. 层类型:Convolution lr_mult: 学习率

Caffe学习系列——工具篇:神经网络模型结构可视化

Caffe学习系列--工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py 本文将就这两种方法加以介绍 1. Netscope:支持Caffe的神经网络结构在线可视化工具 Netscope是个支持prototxt格式描述的神经网络结构的在线可视工具,网址:  http://ethereon.github.io/netscope/quickstart.html  它可以用来可

Caffe学习笔记3

Caffe学习笔记3 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing http://caffe.berkeleyvision.org/gathered/examples/feature_extraction.html 这篇博客主要是用imagenet的一个网络模型来对自己的图片进行训练和测试 图片下载网

Caffe学习笔记

Caffe学习笔记 Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Center (BVLC) and by community contributors.Yangqing Jia created the project during his PhD at

caffe学习

阅读目录 Caffe的优势 Caffe的网络定义 数据及其导数以blobs的形式在层间流动. Caffe的各层定义 训练网络 安装了CUDA之后,依次按照Caffe官网安装指南安装BLAS.OpenCV.Boost即可. Caffe跑跑MNIST试试 让Caffe生成的数据集能在Theano上直接运行 Caffe (CNN, deep learning) 介绍 Caffe深度学习之图像分类模型AlexNet解读 Caffe是一个清晰而高效的深度学习框架,本文详细介绍了caffe的优势.架构,网络

caffe学习(1):多平台下安装配置caffe

caffe学习(1):多平台下安装配置caffe 提到deep learning, caffe的大名自然是如雷贯耳,当然,除了caffe之外,还有很多其他的框架,如torch,mxnet...但是,就我自己这一个月的实验以及师兄的结论都是,caffe得出的实验performance要高于别的框架,可能是C++的威力吧~笑 OK,接下来准备在这个系列分享我使用和学习caffe的一些经验,首先自然是框架的配置了.这里我们分享一下在windows10和ubuntu14.04虚拟机下的Caffe配置(:

Caffe 学习系列

学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一个测试程序 Caffe学习系列(1):安装配置ubuntu14.04+cuda7.5+caffe+cudnn Caffe学习系列(2):数据层及参数 Caffe学习系列(3):视觉层(Vision Layers)及参数 Caffe学习系列(4):激活层(Activiation Layers)及参数

caffe 的layer层组织结构

caffe的layer层是靠INSTANTIATE_CLASS和REGISTER_LAYER_CLASS来进行对各个层类进行处理的.每一个layer都是继承基类Layer的,其中BaseDataLayer是输入数据的基类,从这个类继承的主要是: 这个图可以很好的看到这些layer的继承关系,整个layer层的结构非常清晰,使用抽象工厂的方式构建整个layer层,然后刚才的宏将layer注册成抽象的服务类,然后再使用的时候再向服务器提供者申请调用各个类,这样就可以把proto文件作为个各类的配置文

CAFFE学习笔记(四)将自己的jpg数据转成lmdb格式

1 引言 1-1 以example_mnist为例,如何加载属于自己的测试集? 首先抛出一个问题:在example_mnist这个例子中,测试集是人家给好了的.那么如果我们想自己试着手写几个数字然后验证识别效果又当如何呢? 观察CAFFE_ROOT/examples/mnist/下的lenet_train_test.prototxt文件,发现里面既给出了训练集的路径,又给出了测试集的路径.因此答案很显然了,我们可以把自己的测试集做成leveldb(或lmdb)格式的,然后在lenet_train