2016"百度之星" - 初赛(Astar Round2A)1002 / HDU 5691 状态压缩DP

Sitting in Line

Problem Description

度度熊是他同时代中最伟大的数学家,一切数字都要听命于他。现在,又到了度度熊和他的数字仆人们玩排排坐游戏的时候了。游戏的规则十分简单,参与游戏的N个整数将会做成一排,他们将通过不断交换自己的位置,最终达到所有相邻两数乘积的和最大的目的,参与游戏的数字有整数也有负数。度度熊为了在他的数字仆人面前展现他的权威,他规定某些数字只能在坐固定的位置上,没有被度度熊限制的数字则可以自由地交换位置。

Input

第一行一个整数T,表示T组数据。
每组测试数据将以如下格式从标准输入读入:

N

a1p1

a2p2

:

aNPN

第一行,整数 N(1≤N≤16),代表参与游戏的整数的个数。

从第二行到第 (N+1) 行,每行两个整数,ai(−10000≤ai≤10000)、pi(pi=−1 或 0≤pi<N),以空格分割。ai代表参与游戏的数字的值,pi代表度度熊为该数字指定的位置,如果pi=−1,代表该数字的位置不被限制。度度熊保证不会为两个数字指定相同的位置。

Output

第一行输出:"Case #i:"。i代表第i组测试数据。

第二行输出数字重新排列后最大的所有相邻两数乘积的和,即max{a1⋅a2+a2⋅a3+......+aN−1⋅aN}。

Sample Input

2
6
-1 0
2 1
-3 2
4 3
-5 4
6 5
5
40 -1
50 -1
30 -1
20 -1
10 -1

Sample Output

Case #1:
-70
Case #2:
4600

题解:

  我们设定dp[1<<16][16]:dp[i][j]:i为当前选取的状态并以第j个数结尾的最大值,那么答案就是 max{dp[全集][k]} k属于0到n

  对于dp[i][j] , i这个状态已经填了x个数,我们准备填第x+1个数时, 如果当前位置必填某个数,那么 就只更新以规定的这个数结尾转移方程

  如果没有那就 枚举那么可以任意放的数来更新相应的状态及答案

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
#include<queue>
#include<vector>
using namespace std;
const int N = 1<<17, M = 1e6+10, mod = 1000000007,inf = 1e9;
typedef long long ll;

ll dp[1<<17][17];
int n,a[N],p[N],H[N],F[N];
int main() {
    int T,cas = 1;
    scanf("%d",&T);
    while(T--) {
        scanf("%d",&n);
        memset(H,0,sizeof(H));
        memset(F,-1,sizeof(F));
        int tmp = 0;
        for(int i=0;i<n;i++) {
            scanf("%d%d",&a[i],&p[i]);
            if(p[i]!=-1)
             H[i] = 1,F[p[i]] = i;
        }
        for(int i=0;i<(1<<n);i++)
            for(int j=0;j<n;j++) dp[i][j] = -1e18;
  //      for(int i=0;i<n;i++)
    //        for(int j=0;j<n;j++) if(i!=j&&!H[i]&&!H[j]) dp[(1<<i)|(1<<j)][j] = a[i]*a[j], dp[(1<<i)|(1<<j)][i] = a[i]*a[j];
       if(F[0]!=-1) dp[(1<<F[0])][F[0]] = 0;
       else {
        for(int i=0;i<n;i++) {
            if(!H[i]) dp[(1<<i)][i] = 0;
        }
       }
       int U = (1<<n) - 1;
        for(int i=1;i<=U;i++) {
            int counts = 0;
            for(int j=0;j<n;j++) if((1<<j)&(i)) counts++;
            if(F[counts]!=-1) {
                counts = F[counts];
                for(int j=0;j<n;j++) if(i&(1<<j)&&counts!=j)dp[i|(1<<(counts))][counts] = max(dp[i][j]+a[j]*a[counts],dp[i|(1<<counts)][counts]);
            }
            else {
                for(int k=0;k<n;k++) {
                    if((1<<k)&(i))
                    for(int j=0;j<n;j++) {
                       if(!((1<<j)&i)) {
                            dp[i|(1<<j)][j] = max(dp[i|(1<<j)][j],dp[i][k]+a[k]*a[j]);
                        }
                    }
                }
            }
        }
        printf("Case #%d:\n",cas++);
        ll ans = -1e18;
        for(int i=0;i<n;i++) ans = max(dp[U][i],ans) ;
        printf("%I64d\n",ans);
    }
    return 0;
}
时间: 2024-10-26 19:55:49

2016"百度之星" - 初赛(Astar Round2A)1002 / HDU 5691 状态压缩DP的相关文章

2016百度之星-初赛(Astar Round2A)AII X

Problem Description F(x,m) 代表一个全是由数字x组成的m位数字.请计算,以下式子是否成立: F(x,m) mod k ≡ c Input 第一行一个整数T,表示T组数据. 每组测试数据占一行,包含四个数字x,m,k,c 1≤x≤9 1≤m≤10^10 0≤c<k≤10,000 Output 对于每组数据,输出两行: 第一行输出:"Case #i:".i代表第i组测试数据. 第二行输出“Yes” 或者 “No”,代表四个数字,是否能够满足题目中给的公式.

Hdu 5696 区间价值(2016百度之星初赛Astar Round2B )(线段树)

思路来源于:http://blog.csdn.net/kk303/article/details/51479423 注意数组用 long long 存,否则WA. /* Problem : Status : By wf, */ #include "algorithm" #include "iostream" #include "cstring" #include "cstdio" #include "string&q

2016&quot;百度之星&quot; - 初赛(Astar Round2A)解题报告

此文章可以使用目录功能哟↑(点击上方[+]) 有点智商捉急,第一题卡了好久,看来不服老,不服笨是不行的了...以下是本人目前的题解,有什么疑问欢迎提出 链接→2016"百度之星" - 初赛(Astar Round2A)  Problem 1001 All X Accept: 0    Submit: 0 Time Limit: 2000/1000 mSec(Java/Others)    Memory Limit : 65536 KB  Problem Description F(x,

HDU 5701 中位数计数( 2016&quot;百度之星&quot; - 初赛(Astar Round2B) 思维 + 暴力)

传送门 中位数计数 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 852 Accepted Submission(s): 335 Problem Description 中位数定义为所有值从小到大排序后排在正中间的那个数,如果值有偶数个,通常取最中间的两个数值的平均数作为中位数. 现在有n个数,每个数都是独一无二的,求出每个数在多少个包含

HDU 5698 瞬间移动 (2016&quot;百度之星&quot; - 初赛(Astar Round2B) 1003)

传送门 瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 140 Accepted Submission(s): 66 Problem Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第n行第m列的格子有几种方案

2016&quot;百度之星&quot; - 初赛(Astar Round2A) 1004 D Game 区间DP

D Game Problem Description 众所周知,度度熊喜欢的字符只有两个:B 和D. 今天,它发明了一个游戏:D游戏. 度度熊的英文并不是很高明,所以这里的D,没什么高深的含义,只是代指等差数列[(等差数列百科)](http://baike.baidu.com/view/62268.htm)中的公差D. 这个游戏是这样的,首先度度熊拥有一个公差集合{D},然后它依次写下N个数字排成一行.游戏规则很简单: 1. 在当前剩下的有序数组中选择X(X≥2) 个连续数字: 2. 检查1选择

2016&quot;百度之星&quot; - 初赛(Astar Round2A)--HDU 5690 |数学转化+快速幂

Sample Input 3 1 3 5 2 1 3 5 1 3 5 99 69 Sample Output Case #1: No Case #2: Yes Case #3: Yes Hint 对于第一组测试数据:111 mod 5 = 1,公式不成立,所以答案是"No",而第二组测试数据中满足如上公式,所以答案是 "Yes". 解: m个x组成的数可以表示为x*(1+10+10^2+...+10^m-1)=x*(10^m-1)/9; 即x*(10^m-1)/9%

hdu 5690 2016&quot;百度之星&quot; - 初赛(Astar Round2A) All X 快速二次幂 || 寻找周期

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5690 题意:m个数字全为x mod k ?= c;其中m <= 1010,0 < c,k <= 10,000; 法1:xxx = (10m-1)/9*x;但是n太大,需要同时mod.去除分母将式子变为:10m*x%(9k) - x%(9k) =? 9c ;其中 10m 快速二次幂即可: 时间复杂度为O(logn) 法2: 由于m个x数的产生对于mod具有可拆分性,所以直接求解周期即可: #i

2016&quot;百度之星&quot; - 初赛(Astar Round2A)

http://acm.hdu.edu.cn/showproblem.php?pid=5692 题意:给一棵树,点有权值. 操作1:询问从0点出发,经过x点(输入)的路径中,点权和最大的路径的和是多少. 操作2:将x号点的值更新为y. 思路:已0为根形成一个有根树,经过x点的所有路径的终点都在已x为根的子树中,问题相当于求一颗子树中的所有节点到0点的距离最大值,将题目的点权理解成距离. 解法:用dfs顺序对0为根的树标号,按照标号作为线段树的序号,那么某一颗子树的点在线段树的区间也是连续的了,这是