Spring 事务机制详解

Spring事务机制主要包括声明式事务和编程式事务,此处侧重讲解声明式事务,编程式事务在实际开发中得不到广泛使用,仅供学习参考。

Spring声明式事务让我们从复杂的事务处理中得到解脱。使得我们再也无需要去处理获得连接、关闭连接、事务提交和回滚等这些操作。再也无需要我们在与事务相关的方法中处理大量的try…catch…finally代码。我们在使用Spring声明式事务时,有一个非常重要的概念就是事务属性。事务属性通常由事务的传播行为,事务的隔离级别,事务的超时值和事务只读标志组成。我们在进行事务划分时,需要进行事务定义,也就是配置事务的属性。

下面分别详细讲解,事务的四种属性,仅供诸位学习参考:

Spring在TransactionDefinition接口中定义这些属性,以供PlatfromTransactionManager使用, PlatfromTransactionManager是spring事务管理的核心接口。

public interface TransactionDefinition {
int getPropagationBehavior();//返回事务的传播行为。
int getIsolationLevel();//返回事务的隔离级别,事务管理器根据它来控制另外一个事务可以看到本事务内的哪些数据。
int getTimeout();//返回事务必须在多少秒内完成。
boolean isReadOnly();//事务是否只读,事务管理器能够根据这个返回值进行优化,确保事务是只读的。
}

1. TransactionDefinition接口中定义五个隔离级别:

ISOLATION_DEFAULT 这是一个PlatfromTransactionManager默认的隔离级别,使用数据库默认的事务隔离级别.另外四个与JDBC的隔离级别相对应;

ISOLATION_READ_UNCOMMITTED 这是事务最低的隔离级别,它充许别外一个事务可以看到这个事务未提交的数据。这种隔离级别会产生脏读,不可重复读和幻像读。

ISOLATION_READ_COMMITTED  保证一个事务修改的数据提交后才能被另外一个事务读取。另外一个事务不能读取该事务未提交的数据。这种事务隔离级别可以避免脏读出现,但是可能会出现不可重复读和幻像读。

ISOLATION_REPEATABLE_READ  这种事务隔离级别可以防止脏读,不可重复读。但是可能出现幻像读。它除了保证一个事务不能读取另一个事务未提交的数据外,还保证了避免下面的情况产生(不可重复读)。

ISOLATION_SERIALIZABLE 这是花费最高代价但是最可靠的事务隔离级别。事务被处理为顺序执行。除了防止脏读,不可重复读外,还避免了幻像读。

1: Dirty reads(脏读)。也就是说,比如事务A的未提交(还依然缓存)的数据被事务B读走,如果事务A失败回滚,会导致事务B所读取的的数据是错误的。
2: non-repeatable reads(数据不可重复读)。比如事务A中两处读取数据-total-的值。在第一读的时候,total是100,然后事务B就把total的数据改成 200,事务A再读一次,结果就发现,total竟然就变成200了,造成事务A数据混乱。
3: phantom reads(幻象读数据),这个和non-repeatable reads相似,也是同一个事务中多次读不一致的问题。但是non-repeatable reads的不一致是因为他所要取的数据集被改变了(比如total的数据),但是phantom reads所要读的数据的不一致却不是他所要读的数据集改变,而是他的条件数据集改变。比如Select account.id where account.name="ppgogo*",第一次读去了6个符合条件的id,第二次读取的时候,由于事务b把一个帐号的名字由"dd"改成"ppgogo1",结果取出来了7个数据。

2. 在TransactionDefinition接口中定义了七个事务传播行为:

(1)PROPAGATION_REQUIRED 如果存在一个事务,则支持当前事务。如果没有事务则开启一个新的事务。

Java代码:

//事务属性 PROPAGATION_REQUIRED
methodA{
……
methodB();
……
}

//事务属性 PROPAGATION_REQUIRED
methodB{
   ……
}

使用spring声明式事务,spring使用AOP来支持声明式事务,会根据事务属性,自动在方法调用之前决定是否开启一个事务,并在方法执行之后决定事务提交或回滚事务。

单独调用methodB方法:

Java代码

main{

metodB();

}  
相当于

Java代码

Main{

Connection con=null;

try{

con = getConnection();

con.setAutoCommit(false);

//方法调用

methodB();

//提交事务

con.commit();

}

Catch(RuntimeException ex){

//回滚事务

con.rollback();

}

finally{

//释放资源

closeCon();

}

}

Spring保证在methodB方法中所有的调用都获得到一个相同的连接。在调用methodB时,没有一个存在的事务,所以获得一个新的连接,开启了一个新的事务。

单独调用MethodA时,在MethodA内又会调用MethodB.

执行效果相当于:

Java代码

main{

Connection con = null;

try{

con = getConnection();

methodA();

con.commit();

}

catch(RuntimeException ex){

con.rollback();

}

finally{

closeCon();

}

}

调用MethodA时,环境中没有事务,所以开启一个新的事务.当在MethodA中调用MethodB时,环境中已经有了一个事务,所以methodB就加入当前事务。

(2)PROPAGATION_SUPPORTS 如果存在一个事务,支持当前事务。如果没有事务,则非事务的执行。但是对于事务同步的事务管理器,PROPAGATION_SUPPORTS与不使用事务有少许不同。

Java代码:
             //事务属性 PROPAGATION_REQUIRED
methodA(){
  methodB();
}

//事务属性 PROPAGATION_SUPPORTS
methodB(){
  ……
}

单纯的调用methodB时,methodB方法是非事务的执行的。当调用methdA时,methodB则加入了methodA的事务中,事务地执行。

(3)PROPAGATION_MANDATORY 如果已经存在一个事务,支持当前事务。如果没有一个活动的事务,则抛出异常。

Java代码:

//事务属性 PROPAGATION_REQUIRED
    methodA(){
  methodB();
                }

//事务属性 PROPAGATION_MANDATORY
    methodB(){
    ……
    }

当单独调用methodB时,因为当前没有一个活动的事务,则会抛出异常throw new IllegalTransactionStateException("Transaction propagation ‘mandatory‘ but no existing transaction found");当调用methodA时,methodB则加入到methodA的事务中,事务地执行。

(4)PROPAGATION_REQUIRES_NEW 总是开启一个新的事务。如果一个事务已经存在,则将这个存在的事务挂起。

Java代码:

//事务属性 PROPAGATION_REQUIRED
methodA(){
   doSomeThingA();
methodB();
doSomeThingB();
}

//事务属性 PROPAGATION_REQUIRES_NEW
methodB(){
   ……
}

Java代码:

main(){
  methodA();
}

相当于

Java代码:

main(){
  TransactionManager tm = null;
try{
  //获得一个JTA事务管理器
    tm = getTransactionManager();
    tm.begin();//开启一个新的事务
    Transaction ts1 = tm.getTransaction();
    doSomeThing();
    tm.suspend();//挂起当前事务
    try{
      tm.begin();//重新开启第二个事务
      Transaction ts2 = tm.getTransaction();
      methodB();
      ts2.commit();//提交第二个事务
   }
  Catch(RunTimeException ex){
      ts2.rollback();//回滚第二个事务
  }
  finally{
     //释放资源
   }
    //methodB执行完后,复恢第一个事务
    tm.resume(ts1);
doSomeThingB();
    ts1.commit();//提交第一个事务
}
catch(RunTimeException ex){
   ts1.rollback();//回滚第一个事务
}
finally{
   //释放资源
}
}

在这里,我把ts1称为外层事务,ts2称为内层事务。从上面的代码可以看出,ts2与ts1是两个独立的事务,互不相干。Ts2是否成功并不依赖于 ts1。如果methodA方法在调用methodB方法后的doSomeThingB方法失败了,而methodB方法所做的结果依然被提交。而除了 methodB之外的其它代码导致的结果却被回滚了。使用PROPAGATION_REQUIRES_NEW,需要使用 JtaTransactionManager作为事务管理器。
(5)PROPAGATION_NOT_SUPPORTED  总是非事务地执行,并挂起任何存在的事务。使用PROPAGATION_NOT_SUPPORTED,也需要使用JtaTransactionManager作为事务管理器。(代码示例同上,可同理推出)

(6)PROPAGATION_NEVER 总是非事务地执行,如果存在一个活动事务,则抛出异常;

(7)PROPAGATION_NESTED如果一个活动的事务存在,则运行在一个嵌套的事务中. 如果没有活动事务, 则按TransactionDefinition.PROPAGATION_REQUIRED 属性执行。这是一个嵌套事务,使用JDBC 3.0驱动时,仅仅支持DataSourceTransactionManager作为事务管理器。需要JDBC 驱动的java.sql.Savepoint类。有一些JTA的事务管理器实现可能也提供了同样的功能。使用PROPAGATION_NESTED,还需要把PlatformTransactionManager的nestedTransactionAllowed属性设为true;而 nestedTransactionAllowed属性值默认为false;

Java代码:

//事务属性 PROPAGATION_REQUIRED
methodA(){
   doSomeThingA();
   methodB();
   doSomeThingB();
}

//事务属性 PROPAGATION_NESTED
methodB(){
  ……
}

如果单独调用methodB方法,则按REQUIRED属性执行。如果调用methodA方法,相当于下面的效果:

Java代码:

main(){
Connection con = null;
Savepoint savepoint = null;
try{
   con = getConnection();
   con.setAutoCommit(false);
   doSomeThingA();
   savepoint = con2.setSavepoint();
   try{
       methodB();
   }catch(RuntimeException ex){
      con.rollback(savepoint);
   }
   finally{
     //释放资源
  }

doSomeThingB();
   con.commit();
}
catch(RuntimeException ex){
  con.rollback();
}
finally{
   //释放资源
}
}

当methodB方法调用之前,调用setSavepoint方法,保存当前的状态到savepoint。如果methodB方法调用失败,则恢复到之前保存的状态。但是需要注意的是,这时的事务并没有进行提交,如果后续的代码(doSomeThingB()方法)调用失败,则回滚包括methodB方法的所有操作。

嵌套事务一个非常重要的概念就是内层事务依赖于外层事务。外层事务失败时,会回滚内层事务所做的动作。而内层事务操作失败并不会引起外层事务的回滚。

PROPAGATION_NESTED 与PROPAGATION_REQUIRES_NEW的区别:它们非常类似,都像一个嵌套事务,如果不存在一个活动的事务,都会开启一个新的事务。使用 PROPAGATION_REQUIRES_NEW时,内层事务与外层事务就像两个独立的事务一样,一旦内层事务进行了提交后,外层事务不能对其进行回滚。两个事务互不影响。两个事务不是一个真正的嵌套事务。同时它需要JTA事务管理器的支持。

使用PROPAGATION_NESTED时,外层事务的回滚可以引起内层事务的回滚。而内层事务的异常并不会导致外层事务的回滚,它是一个真正的嵌套事务。DataSourceTransactionManager使用savepoint支持PROPAGATION_NESTED时,需要JDBC 3.0以上驱动及1.4以上的JDK版本支持。其它的JTA TrasactionManager实现可能有不同的支持方式。

PROPAGATION_REQUIRES_NEW 启动一个新的, 不依赖于环境的 "内部" 事务. 这个事务将被完全 commited 或 rolled back 而不依赖于外部事务, 它拥有自己的隔离范围, 自己的锁, 等等. 当内部事务开始执行时, 外部事务将被挂起, 内务事务结束时, 外部事务将继续执行。

另一方面, PROPAGATION_NESTED 开始一个 "嵌套的" 事务,  它是已经存在事务的一个真正的子事务. 潜套事务开始执行时,  它将取得一个 savepoint. 如果这个嵌套事务失败, 我们将回滚到此 savepoint. 潜套事务是外部事务的一部分, 只有外部事务结束后它才会被提交。

由此可见, PROPAGATION_REQUIRES_NEW 和 PROPAGATION_NESTED 的最大区别在于, PROPAGATION_REQUIRES_NEW 完全是一个新的事务, 而 PROPAGATION_NESTED 则是外部事务的子事务, 如果外部事务 commit, 潜套事务也会被 commit, 这个规则同样适用于 roll back.
PROPAGATION_REQUIRED应该是我们首先的事务传播行为。它能够满足我们大多数的事务需求。

时间: 2024-08-06 20:43:44

Spring 事务机制详解的相关文章

spring事务配置详解

spring的事务配置一直感觉都比较的模糊,没有一个清楚的认识.通过这次的学习发觉Spring的事务配置只要把思路理清,还是比较好掌握的. 总结如下: Spring配置文件中关于事务配置总是由三个组成部分,分别是DataSource.TransactionManager和代理机制这三部分,无论哪种配置方式,一般变化的只是代理机制这部分. DataSource.TransactionManager这两部分只是会根据数据访问方式有所变化.但总的来说都是对Connection的封装,变化基本上可以忽略

这可能是最漂亮的Spring事务管理详解

事务概念回顾 什么是事务? 事务是逻辑上的一组操作,要么都执行,要么都不执行. 事物的特性(ACID): 原子性: 事务是最小的执行单位,不允许分割.事务的原子性确保动作要么全部完成,要么完全不起作用: 一致性: 执行事务前后,数据保持一致: 隔离性: 并发访问数据库时,一个用户的事物不被其他事物所干扰,各并发事务之间数据库是独立的: 持久性: 一个事务被提交之后.它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响. Spring事务管理接口介绍 Spring事务管理接口:

一文解析Spring事务管理详解;通俗易懂,轻松掌握!

事务概念回顾 什么是事务? 事务是逻辑上的一组操作,要么都执行,要么都不执行. 事物的特性(ACID): 原子性:?事务是最小的执行单位,不允许分割.事务的原子性确保动作要么全部完成,要么完全不起作用: 一致性:?执行事务前后,数据保持一致: 隔离性:?并发访问数据库时,一个用户的事物不被其他事物所干扰,各并发事务之间数据库是独立的: 持久性:?一个事务被提交之后.它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响. Spring事务管理接口介绍 Spring事务管理接口:

spring 事务管理详解 学习心得

今天,我终于登上了你的诺曼底,spring事务. 在此之前,一谈起spring我就没底,虽然用的很顺手,但是其中的AOP和事务一直未理解和掌握,数次尝试突破都未成功,之前看过很多网上的相关文章和书籍,要么基于的版本不同,有的基于spring2有的基于spring3:要么切入点不同,有的讲的太低级,我都懂,有的讲的太庞杂,我晕了...... 从这周一开始,我决定在试一下.计划每天的上午专门学习,横扫各大网站,收集文章,然后对其分类,整理记笔记,到周二坚持一个一个的看,规整,理解,熟记,本子下写下了

Spring事务之详解--三种实现方式

实现购买股票案例: 一.引入JAR文件: 二.开始搭建分层架构---创建账户(Account)和股票(Stock)实体类 Account: /* * 账户 */ public class Account { private int aid;//账户编号 private String aname;//账户名称 private double balance;//账户金额 public int getAid() { return aid; } public void setAid(int aid) {

spring声明式事务配置详解

spring声明式事务配置详解 君子不器 2013年06月16日 编程世界 5273次阅读 查看评论 理解Spring的声明式事务管理实现 本节的目的是消除与使用声明式事务管理有关的神秘性.简单点儿总是好的,这份参考文档只是告诉你给你的类加上@Transactional注解,在配置文件中添加('<tx:annotation-driven/>')行,然后期望你理解整个过程是怎么工作的.此节讲述Spring的声明式事务管理内部的工作机制,以帮助你在面对事务相关的问题时不至于误入迷途,回朔到上游平静

Spring Cache抽象详解

缓存简介 缓存,我的理解是:让数据更接近于使用者:工作机制是:先从缓存中读取数据,如果没有再从慢速设备上读取实际数据(数据也会存入缓存):缓存什么:那些经常读取且不经常修改的数据/那些昂贵(CPU/IO)的且对于相同的请求有相同的计算结果的数据.如CPU--L1/L2--内存--磁盘就是一个典型的例子,CPU需要数据时先从L1/L2中读取,如果没有到内存中找,如果还没有会到磁盘上找.还有如用过Maven的朋友都应该知道,我们找依赖的时候,先从本机仓库找,再从本地服务器仓库找,最后到远程仓库服务器

【Hibernate步步为营】--锁机制详解

上篇文章详细讨论了hql的各种查询方法,在讨论过程中写了代码示例,hql的查询方法类似于sql,查询的方法比较简单,有sql基础的开发人员在使用hql时就会变得相当的简单.Hibernate在操作数据库的同时也提供了对数据库操作的限制方法,这种方法被称为锁机制,Hibernate提供的锁分为两种一种是乐观锁,另外一种是悲观锁.通过使用锁能够控制数据库的并发性操作,限制用户对数据库的并发性的操作. 一.锁简介 锁能控制数据库的并发操作,通过使用锁来控制数据库的并发操作,Hibernate提供了两种

一份spring配置文件及其详解

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/axu20/archive/2009/10/14/4668188.aspx 1.基本配置:<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/