【BZOJ-3144】切糕 最小割-最大流

3144: [Hnoi2013]切糕

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1261  Solved: 700
[Submit][Status][Discuss]

Description

Input

第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。 
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。

Output

仅包含一个整数,表示在合法基础上最小的总不和谐值。

Sample Input

2 2 2
1
6 1
6 1
2 6
2 6

Sample Output

6

HINT

最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1

Source

Solution

把一个立体几何的东西换成平面几何,想成一个矩阵

每个矩阵有一些值要取,而且要满足相邻的相差不到D

所以考虑分层建图,按高度分层,然后最小割即可

感觉是个比较经典的模型?

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int read()
{
    int x=0,f=1; char ch=getchar();
    while (ch<‘0‘ || ch>‘9‘) {if (ch==‘-‘)f=-1; ch=getchar();}
    while (ch>=‘0‘ && ch<=‘9‘) {x=x*10+ch-‘0‘; ch=getchar();}
    return x*f;
}
#define maxn 50*50*50
#define maxm 1000100
int p,q,r,d,ans;
int val[50][50][50];
struct Edgenode{int to,next,cap;}edge[maxm];
int head[maxn],cnt=1;
void add(int u,int v,int w)
{cnt++;edge[cnt].to=v;edge[cnt].cap=w;edge[cnt].next=head[u];head[u]=cnt;}
void insert(int u,int v,int w)
{add(u,v,w);add(v,u,0);}
//
int dis[maxn],que[maxn<<1],cur[maxn],S,T;
bool bfs()
{
    for (int i=S; i<=T; i++) dis[i]=-1;
    que[0]=S; dis[S]=0; int he=0,ta=1;
    while (he<ta)
        {
            int now=que[he++];
            for (int i=head[now]; i; i=edge[i].next)
                if (edge[i].cap && dis[edge[i].to]==-1)
                    dis[edge[i].to]=dis[now]+1,que[ta++]=edge[i].to;
        }
    return dis[T]!=-1;
}
int dfs(int loc,int low)
{
    if (loc==T) return low;
    int w,used=0;
    for (int i=cur[loc]; i; i=edge[i].next)
        if (edge[i].cap && dis[edge[i].to]==dis[loc]+1)
            {
                w=dfs(edge[i].to,min(low-used,edge[i].cap));
                edge[i].cap-=w; edge[i^1].cap+=w;
                used+=w; if (edge[i].cap) cur[loc]=i;
                if (used==low) return low;
            }
    if (!used) dis[loc]=-1;
    return used;
}
#define inf 0x7fffffff
int dinic()
{
    int tmp=0;
    while (bfs())
        {
            for (int i=S; i<=T; i++) cur[i]=head[i];
            tmp+=dfs(S,inf);
        }
    return tmp;
}//
int loc(int x,int y,int z)
{if (z==0) return 0;return (z-1)*p*q+(x-1)*q+y;}
void make()
{
    S=0,T=p*q*r+1;
    for (int i=1; i<=p; i++)
        for (int j=1; j<=q; j++)
            {
                for (int k=1; k<=r; k++)
                    {
                        insert(loc(i,j,k-1),loc(i,j,k),val[i][j][k]);
                        if(k>d)
                            {
                                if (i-1>=1) insert(loc(i,j,k),loc(i-1,j,k-d),inf);
                                if (i+1<=p) insert(loc(i,j,k),loc(i+1,j,k-d),inf);
                                if (j-1>=1) insert(loc(i,j,k),loc(i,j-1,k-d),inf);
                                if (j+1<=q) insert(loc(i,j,k),loc(i,j+1,k-d),inf);
                            }

                    }
                insert(loc(i,j,r),T,inf);
            }
}
int main()
{
    p=read(),q=read(),r=read(); d=read();
    for (int i=1; i<=r; i++)
        for (int j=1; j<=p; j++)
            for (int k=1; k<=q; k++)
                val[j][k][i]=read();
    make();
    ans=dinic();
    printf("%d\n",ans);
    return 0;
}

吐槽自己代码丑,我认了....

话说数学和语文学的真不好....刚看题居然没看懂......

时间: 2024-12-28 12:25:46

【BZOJ-3144】切糕 最小割-最大流的相关文章

bzoj 3144 切糕 —— 最小割

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 每个点拆成 R 个,连成一条链,边上是权值,割掉代表选这一层: 然后每个点的第 t 层向四周的点的第 t-d 层连边,就能达到选了第 i 条边,则四周的点必须选 i-d ~ T 范围的边,而对方反过来一连,就限制在 i-d ~ i+d 了: 竟然因为忘记 ct=1 而调了一小时呵呵... 代码如下: #include<cstdio> #include<cstring>

【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点

1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit][Status][Discuss] Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站,如果切断这条道路,需要代价ci.现在B国想找出一个路径切断方案

ZOJ3792_Romantic Value(网络流/最小割=最大流/找割边)

解题报告 题目传送门 题意: 给出一个无向图,以及起点与终点.要删除一些边使得起点与终点不连通,在删掉边的权值之和最小的情况下要求删除的边数尽量少. 求出一个比值:剩余边数权值和/删除的边数. 思路: 明显的让起点终点达不到就是一个最小割,用最大流可以求出. 但是求割边边数就不会了,没做过最小割的求割边问题. 割边一定是残留网络中零流的边,但零流不一定是割边. 飞神的想法很奇特.链接传送 可以把残留网络的零流的边设成容量为1,其他设成无穷,再求一次最大流.最后流量一定等于割边边数 另外: 还有一

Destroying The Graph 最小点权集--最小割--最大流

Destroying The Graph 构图思路: 1.将所有顶点v拆成两个点, v1,v2 2.源点S与v1连边,容量为 W- 3.v2与汇点连边,容量为 W+ 4.对图中原边( a, b ), 连边 (a1,b2),容量为正无穷大 则该图的最小割(最大流)即为最小花费. 简单证明: 根据ST割集的定义,将顶点分成两个点集.所以对于原图中的边(a,b),转换成 S->a1->b2->T. 则此时路径必定存在 一条割边,因为a1->b2为无穷大,所以割边必定是 S->a1

POJ3469_Dual Core CPU(网络流/最小割=最大流/模版)----Dinic模版2.0

解题报告 题目传送门 题意: 双核CPU,n个模块,每个模块必须运行在某个CPU核心上,每个模块在cpu单核的消耗A和B,M对模块要共享数据,如果在同一个核心上不用消耗,否则需要耗费.安排N个模块,使得总耗费最小 思路: 将两个cpu核心看成源点和汇点,其他模块分别与源点汇点连线(表示每个模块可以在任意cpu上运行),m对模块分别连双向边,要使得模块只能在一个cpu上运行,就是找到一个割,源点和汇点必不联通,耗费最少就是最小割,最小割最大流原理转换成求最大流. 这题数据大,没优化TLE了,加了两

bzoj 3144: [Hnoi2013]切糕 最小割

3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R). 100%的数据满足P,Q,R≤40,0≤D≤

BZOJ 3144 HNOI 2013 切糕 最小割

题目大意:给出一个三维的点阵,没个点都有可能被切割,代价就是这个点的权值.相邻的切割点的高度差不能超过D,问最小的花费使得上下分开. 思路:很裸的最小割模型,很神的建图. S->第一层的点,f:INF 所有点->它下面的点,f:INF 一个点的入->一个点的出,f:val[i] (i,j,k) - > (i - d,j,k),f:INF 最下面一层的点->T:f:INF 然后跑最小割就是答案. 为什么见:http://www.cnblogs.com/zyfzyf/p/4182

hiho一下 第119周 #1398 : 网络流五&#183;最大权闭合子图 【最小割-最大流--Ford-Fulkerson 与 Dinic 算法】

#1398 : 网络流五·最大权闭合子图 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 周末,小Hi和小Ho所在的班级决定举行一些班级建设活动. 根据周内的调查结果,小Hi和小Ho一共列出了N项不同的活动(编号1..N),第i项活动能够产生a[i]的活跃值. 班级一共有M名学生(编号1..M),邀请编号为i的同学来参加班级建设活动需要消耗b[i]的活跃值. 每项活动都需要某些学生在场才能够进行,若其中有任意一个学生没有被邀请,这项活动就没有办法进行. 班级建设的活

POJ 3308 Paratroopers (二分图最小点权覆盖 -&gt; 最小割 -&gt; 最大流)

POJ 3308 Paratroopers 链接:http://poj.org/problem?id=3308 题意:有一个N*M的方阵,有L个伞兵降落在方阵上.现在要将所有的伞兵都消灭掉,可以在每行每列装一个高射炮,如果在某行(某列)装上高射炮之后,能够消灭所有落在该行(该列)的伞兵.每行每列安高射炮有费用,问如何安装能够使得费用之积最小. 思路:首先题目要求乘积最小,将乘积对e取对数,会发现就变成了求和.然后抽象出一个二分图,每一行是x部的一个点,每个点有权值,权值为费用取ln.每一列是y部