hdoj 1203 I NEED A OFFER! 【01背包】

I NEED A OFFER!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 20483    Accepted Submission(s): 8176

Problem Description

Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了。要申请国外的任何大学,你都要交纳一定的申请费用,这可是很惊人的。Speakless没有多少钱,总共只攒了n万美元。他将在m个学校中选择若干的(当然要在他的经济承受范围内)。每个学校都有不同的申请费用a(万美元),并且Speakless估计了他得到这个学校offer的可能性b。不同学校之间是否得到offer不会互相影响。“I NEED A OFFER”,他大叫一声。帮帮这个可怜的人吧,帮助他计算一下,他可以收到至少一份offer的最大概率。(如果Speakless选择了多个学校,得到任意一个学校的offer都可以)。

Input

输入有若干组数据,每组数据的第一行有两个正整数n,m(0<=n<=10000,0<=m<=10000)

后面的m行,每行都有两个数据ai(整型),bi(实型)分别表示第i个学校的申请费用和可能拿到offer的概率。

输入的最后有两个0。

Output

每组数据都对应一个输出,表示Speakless可能得到至少一份offer的最大概率。用百分数表示,精确到小数点后一位。

Sample Input

10 3
4 0.1
4 0.2
5 0.3
0 0

Sample Output

44.0%

Hint

You should use printf("%%") to print a ‘%‘.

思路:反向考虑,先求每所学校落选的概率,最后1减去最小的落选概率,就是最大的得到offer的概率。

代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
double sum[10010];
int cost[10010];
double prob[10010];
int main()
{
	int n,m;
	int i,j;
	double p;
	while(scanf("%d%d",&n,&m),n|m)
	{
		for(i=0;i<=n;i++)//sum数组初始化为1;
		{
			sum[i]=1;
		}
		for(i=0;i<m;i++)
		{
			scanf("%d%lf",&cost[i],&p);
			prob[i]=1-p;//落选概率;
		}
		for(i=0;i<m;i++)
		{
			for(j=n;j>=cost[i];j--)
			{
				sum[j]=min(sum[j],sum[j-cost[i]]*prob[i]);
			    //最小的落选概率;
			}
		}
		printf("%.1lf%%\n",(1-sum[n])*100);
	}
	return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-24 23:39:40

hdoj 1203 I NEED A OFFER! 【01背包】的相关文章

hdu 1203 I NEED A OFFER (0-1背包)

题意分析:0-1背包变形  递推公式:dp[i] = max(dp[i], 1-(1-dp[i-C])*(1-p)) /* I NEED A OFFER! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 17860 Accepted Submission(s): 7152 Problem Description Speakless很早就想出国

HDU 1203 I NEED A OFFER! 01背包题解

本题题目居然写错了也没改正,囧,应该是AN OFFER! 题解就是dp加上概率论求解. 因为需要求最少有一间学校录取的概率,那么就可以使用逆向思维,求没有一间学校录取的概率.基本的概率论思维,不过如果久了没做概率论还是会有点麻烦的. 然后就是标准的01背包求解了: #include <stdio.h> #include <vector> #include <string.h> #include <algorithm> #include <iostrea

HDU - 1203 I NEED A OFFER!(01背包)

题意:Speakless,给定他所攒的钱n,若干个学校的申请费用和可能拿到offer的概率.求Speakless可能得到至少一份offer的最大概率. 这个问题就和hdu2955差不多,dp里面储存至少一份offer的最大概率,求的时候先转化成拿不到概率相乘,在用1减去. 1 #include<bits/stdc++.h> 2 using namespace std; 3 4 const int maxn=10010; 5 double dp[maxn],value[maxn]; 6 int

HDU 1203 I NEED A OFFER! 01背包 概率运算预处理。

题目大意:中问题就不说了 ^—^~ 题目思路:从题目来看是很明显的01背包问题,被录取的概率记为v[],申请费用记为w[].但是我们可以预先做个处理,使问题解决起来更方便:v[]数组保留不被录取的概率,则dp[j]则代表在j元费用下,不被录取的最低概率是多少,最后用1减去dp[n]即可. dp式子为:dp[j]=min(dp[j],dp[j-w[i]]*v[i]); (j表示共有j元申请费用). 详细看代码注释 #include<cstdio> #include<stdio.h>

hdoj 1203 I NEED A OFFER! 【另类01背包】【概率背包】

题意:... 策略:动态规划. 因为是求至少能得到一个offer的概率,那我们可以反着求,求得不到一个offer的概率,最后用1减去就好了. 代码: #include<string.h> #include<stdio.h> double dp[10010]; struct node{ int a; double b; }s[10010]; int main() { int n, m, i, j; while(scanf("%d%d", &n, &

Hdoj 1203.I NEED A OFFER! 题解

Problem Description Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了.要申请国外的任何大学,你都要交纳一定的申请费用,这可是很惊人的.Speakless没有多少钱,总共只攒了n万美元.他将在m个学校中选择若干的(当然要在他的经济承受范围内).每个学校都有不同的申请费用a(万美元),并且Speakless估计了他得到这个学校offer的可能性b.不同学校之间是否得到offer不会互相影响."I NEED A OFF

饭卡------HDOJ杭电2546(还是01背包!!!!!!)

Problem Description 电子科大本部食堂的饭卡有一种非常诡异的设计,即在购买之前推断剩余金额. 假设购买一个商品之前,卡上的剩余金额大于或等于5元,就一定能够购买成功(即使购买后卡上剩余金额为负),否则无法购买(即使金额足够).所以大家都希望尽量使卡上的剩余金额最少. 某天,食堂中有n种菜出售.每种菜可购买一次. 已知每种菜的价格以及卡上的剩余金额,问最少可使卡上的剩余金额为多少. Input 多组数据.对于每组数据: 第一行为正整数n.表示菜的数量.n<=1000. 第二行包含

hdoj 1864 最大报销额 【01背包】||【dfs】

最大报销额 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 17014    Accepted Submission(s): 4959 Problem Description 现有一笔经费可以报销一定额度的发票.允许报销的发票类型包括买图书(A类).文具(B类).差旅(C类),要求每张发票的总额不得超过1000元,每张发票上,单项物品的

HDU1203:I NEED A OFFER!(01背包)

http://acm.hdu.edu.cn/showproblem.php?pid=1203 Problem Description Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了.要申请国外的任何大学,你都要交纳一定的申请费用,这可是很惊人的.Speakless没有多少钱,总共只攒了n万美元.他将在m个学校中选择若干的(当然要在他的经济承受范围内).每个学校都有不同的申请费用a(万美元),并且Speakless估计了他得到这个学