拓展KMP算法详解

  拓展KMP解决的问题是给两个串S和T,长度分别是n和m,求S的每一个后缀子串与T的最长公共前缀分别是多少,记作extend数组,也就是说extend[i]表示S[i,n-1](i从0开始)和T的最长公共前缀长度。

  需要注意的是如果extend[i]=m,即S[i,n-1]和T的最长公共前缀长度是m(正好是T的长度),那么就表示T在S中找到匹配而且起始位置是i,这就解释了为什么这个算法叫做拓展KMP了。

  其实大致和KMP有异曲同工之妙,都是匹配,都是借用一个next数组。 

  下面举一个例子,S=”aaaabaa”,T=”aaaaa”,首先,计算extend[0]时,需要进行5次匹配,直到发生失配。

  

  从而得知extend[0]=4,下面计算extend[1],在计算extend[1]时,是否还需要像计算extend[0]时从头开始匹配呢?答案是否定的,因为通过计算extend[0]=4,从而可以得出S[0,3]=T[0,3],进一步可以得到 S[1,3]=T[1,3],计算extend[1]时,事实上是从S[1]开始匹配,设辅助数组next[i]表示T[i,m-1]和T的最长公共前缀长度。在这个例子中,next[1]=4,即T[0,3]=T[1,4],进一步得到T[1,3]=T[0,2],所以S[1,3]=T[0,2],所以在计算extend[1]时,通过extend[0]的计算,已经知道S[1,3]=T[0,2],所以前面3个字符已经不需要匹配,直接匹配S[4]和T[3]即可,这时一次就发生失配,所以extend[1]=3。这个例子很有代表性,有兴趣的读者可以继续计算剩下的extend数组。

1. 拓展kmp算法一般步骤

通过上面的例子,事实上已经体现了拓展kmp算法的思想,下面来描述拓展kmp算法的一般步骤。

  首先我们从左到右依次计算extend数组,在某一时刻,设extend[0...k]已经计算完毕,并且之前匹配过程中所达到的最远位置为P,所谓最远位置,严格来说就是i+extend[i]-1的最大值(0<=i<=k),并且设这个最大值的位置为po,如在上一个例子中,计算extend[1]时,P=3,po=0。

现在要计算extend[k+1],根据extend数组的定义,可以推断出S[po,P]=T[0,P-po],从而得到 S[k+1,P]=T[k-po+1,P-po],令len=next[k-po+1],(回忆下next数组的定义),分两种情况讨论:

第一种情况:k+len<P

如下图所示:

  上图中,S[k+1,k+len]=T[0,len-1],然后S[k+len+1]一定不等于T[len],因为如果它们相等,则有S[k+1,k+len+1]=T[k+po+1,k+po+len+1]=T[0,len],那么next[k+po+1]=len+1,这和next数组的定义不符(next[i]表示T[i,m-1]和T的最长公共前缀长度),所以在这种情况下,不用进行任何匹配,就知道extend[k+1]=len。

第二种情况: k+len>=P

如下图:

上图中,S[p+1]之后的字符都是未知的,也就是还未进行过匹配的字符串,所以在这种情况下,就要从S[P+1]和T[P-k+1]开始一一匹配,直到发生失配为止,当匹配完成后,如果得到的extend[k+1]+(k+1)大于P则要更新未知P和po。

  至此,拓展kmp算法的过程已经描述完成,细心地读者可能会发现,next数组是如何计算还没有进行说明,事实上,计算next数组的过程和计算extend[i]的过程完全一样,将它看成是以T为母串,T为字串的特殊的拓展kmp算法匹配就可以了,计算过程中的next数组全是已经计算过的,所以按照上述介绍的算法计算next数组即可,这里不再赘述。

2. 时间复杂度分析

  下面来分析一下算法的时间复杂度,通过上面的算法介绍可以知道,对于第一种情况,无需做任何匹配即可计算出extend[i],对于第二种情况,都是从未被匹配的位置开始匹配,匹配过的位置不再匹配,也就是说对于母串的每一个位置,都只匹配了一次,所以算法总体时间复杂度是O(n)的,同时为了计算辅助数组next[i]需要先对字串T进行一次拓展kmp算法处理,所以拓展kmp算法的总体复杂度为O(n+m)的。其中n为母串的长度,m为子串的长度。

3. 模板

 1 #include<cstdio>
 2 #include<cstring>
 3 const int maxn = 100010;
 4 char s[maxn]= "aaaabaa", t[maxn] = "aaaaa";
 5 int nextt[maxn], ls, lt, extend[maxn];
 6
 7 void get_next();
 8 void exkmp();
 9
10 int main()
11 {
12     ls = strlen(s);//不要全局和局部乱用
13     lt = strlen(t);
14
15     exkmp();
16     for(int i = 0; i < lt; i++){
17         printf("%d ",nextt[i]);
18     }
19     puts("");
20
21     for(int i = 0; i < ls; i++){
22         printf("%d ",extend[i]);
23     }
24     puts("");
25     return 0;
26 }
27
28 void get_next(){
29     nextt[0] = lt;
30
31     int k = 1;
32     while(k < lt && t[k] == t[k - 1])
33         k++;
34     nextt[1] = k;
35
36     int po = 1;
37     for(k = 2; k < lt; k++){
38         if(nextt[k - po] + k <  nextt[po] + po)
39             nextt[k] = nextt[k - po];
40         else{
41             int j = nextt[po] + po - k;
42             if(j < 0)
43                 j=0;
44             while(j + k < lt && t[j] == t[j + k])
45                 j++;
46
47             nextt[k] = j;
48             po = k;
49         }
50     }
51 }
52
53 void exkmp(){
54     memset(nextt,0,sizeof(nextt));
55     get_next();
56
57     int k = 0;
58     while(k < ls && k < lt && s[k] == t[k])
59         k++;
60     extend[0] = k;
61
62     int po=0;
63     for(k = 1; k < ls; k++){
64         if(nextt[k - po] + k < extend[po] + po)
65             extend[k] = nextt[k - po];
66         else{
67             int j = extend[po] + po - k;
68             if(j < 0)
69                 j = 0;
70             while(k + j < ls && j < lt && s[k + j] == t[j])
71                 j++;
72
73             extend[k] = j;
74             po = k;
75         }
76     }
77 }

4. 模板练习题

https://cn.vjudge.net/problem/HDU-3613

练习题参考解答:

5.参考博客原文链接:
https://blog.csdn.net/dyx404514/article/details/41831947

原文地址:https://www.cnblogs.com/wenzhixin/p/9355480.html

时间: 2024-10-07 09:29:41

拓展KMP算法详解的相关文章

[转] KMP算法详解

转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串).比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串.

KMP算法详解(图示+代码)

算法过程非常绕,不要企图一次就能看明白,多尝试就会明白一些.下面试图用比较直观的方法解释这个算法,对KMP算法的解释如下: 1. 首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较.因为B与A不匹配,所以搜索词后移一位. 2. 因为B与A不匹配,搜索词再往后移. 3. 就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止. 4. 接着比较字符串和搜索词的下一个字符,还是相同. 5. 直到字

KMP算法详解(转自中学生OI写的。。ORZ!)

KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串).比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串.你可以委婉地问你的MM:“假如你要向你喜欢的人表白的话,我的名字是你的告白语中的子串吗?”    

KMP算法详解(转)

KMP 算法,是由Knuth,Morris,Pratt共同提出的模式匹配算法,其对于任何模式和目标序列,都可以在线性时间内完成匹配查找,而不会发生退化, 是一个非常优秀的模式匹配算法.但是相较于其他模式匹配算法,该算法晦涩难懂,第一次接触该算法的读者往往会看得一头雾水,主要原因是KMP算法在构造跳 转表next过程中进行了多个层面的优化和抽象,使得KMP算法进行模式匹配的原理显得不那么直白.本文希望能够深入KMP算法,将该算法的各个细节彻底 讲透,扫除读者对该算法的困扰. KMP算法对于朴素匹配

通俗易懂的KMP算法详解

角色: 甲:abbaabbaaba 乙:abbaaba 乙对甲说:「帮忙找一下我在你的哪个位置.」 甲从头开始与乙一一比较,发现第 7 个字符不匹配. 要是在往常,甲会回退到自己的第 2 个字符,乙则回退到自己的开头,然后两人开始重新比较.[1]这样的事情在字符串王国中每天都在上演:不匹配,回退,不匹配,回退,…… 但总有一些妖艳字符串要花出自己不少的时间. 上了年纪的甲想做出一些改变.于是甲把乙叫走了:「你先一边玩去,我自己研究下.」 甲给自己定了个小目标:发生不匹配,自己不回退. 甲发现,若

KMP算法详解

这几天学习kmp算法,解决字符串的匹配问题,开始的时候都是用到BF算法,(BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和 T的第二个字符;若不相等,则比较S的第二个字符和T的第一个字符,依次比较下去,直到得出最后的匹配结果.BF算法是一种蛮力算法.)虽然也能解决一些问题,但是这是常规思路,在内存大,数据量小,时间长的情况下,还能解决一些问题,但是如果遇到一些限制时间和内存的字符串问

(转载)KMP算法详解(写的很好)

原文地址:http://www.cnblogs.com/yjiyjige/p/3263858.html KMP算法应该是每一本<数据结构>书都会讲的,算是知名度最高的算法之一了,但很可惜,我大二那年压根就没看懂过~~~ 之后也在很多地方也都经常看到讲解KMP算法的文章,看久了好像也知道是怎么一回事,但总感觉有些地方自己还是没有完全懂明白.这两天花了点时间总结一下,有点小体会,我希望可以通过我自己的语言来把这个算法的一些细节梳理清楚,也算是考验一下自己有真正理解这个算法. 什么是KMP算法: K

模式匹配的KMP算法详解

这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KMP算法.大概学过信息学的都知道,是个比较难理解的算法,今天特把它搞个彻彻底底明明白白. 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考<数据结构>中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length

KMP算法详解 --- 彻头彻尾理解KMP算法

[经典算法]——KMP,深入讲解next数组的求解 前言 之前对kmp算法虽然了解它的原理,即求出P0···Pi的最大相同前后缀长度k:但是问题在于如何求出这个最大前后缀长度呢?我觉得网上很多帖子都说的不是很清楚,总感觉没有把那层纸戳破,后来翻看算法导论,32章 字符串匹配虽然讲到了对前后缀计算的正确性,但是大量的推理证明不大好理解,没有与程序结合起来讲.今天我在这里讲一讲我的一些理解,希望大家多多指教,如果有不清楚的或错误的请给我留言. 1.kmp算法的原理: 本部分内容转自:http://w