‘‘‘ 【课程3.6】 基本图表绘制 plt.plot() 图表类别:线形图、柱状图、密度图,以横纵坐标两个维度为主 同时可延展出多种其他图表样式 plt.plot(kind=‘line‘, ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds) ‘‘‘
import numpy as np import pandas as pd import matplotlib.pyplot as plt % matplotlib inline
# Series直接生成图表 ts = pd.Series(np.random.randn(1000), index=pd.date_range(‘1/1/2000‘, periods=1000)) ts = ts.cumsum() ts.plot(kind=‘line‘, label = ‘hehe‘, style = ‘--g.‘, color = ‘red‘, alpha = 0.4, use_index = True, rot = 45, grid = True, ylim = [-50,50], yticks = list(range(-50,50,10)), figsize = (8,4), title = ‘test‘, legend = True) #plt.grid(True, linestyle = "--",color = "gray", linewidth = "0.5",axis = ‘x‘) # 网格 plt.legend() # Series.plot():series的index为横坐标,value为纵坐标 # kind → line,bar,barh...(折线图,柱状图,柱状图-横...) # label → 图例标签,Dataframe格式以列名为label # style → 风格字符串,这里包括了linestyle(-),marker(.),color(g) # color → 颜色,有color指定时候,以color颜色为准 # alpha → 透明度,0-1 # use_index → 将索引用为刻度标签,默认为True # rot → 旋转刻度标签,0-360 # grid → 显示网格,一般直接用plt.grid # xlim,ylim → x,y轴界限 # xticks,yticks → x,y轴刻度值 # figsize → 图像大小 # title → 图名 # legend → 是否显示图例,一般直接用plt.legend() # 也可以 → plt.plot()
输出:
# Dataframe直接生成图表 df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list(‘ABCD‘)) df = df.cumsum() df.plot(kind=‘line‘, style = ‘--.‘, alpha = 0.4, use_index = True, rot = 45, grid = True, figsize = (8,4), title = ‘test‘, legend = True, subplots = False, colormap = ‘Greens‘) # subplots → 是否将各个列绘制到不同图表,默认False # 也可以 → plt.plot(df)
输出:
原文地址:https://www.cnblogs.com/654321cc/p/9478790.html
时间: 2024-11-11 03:17:01