内核链表函数详解

内核中经常采用链表来管理对象,先看一下内核中对链表的定义
    struct list_head {
        struct list_head *next, *prev;
    };

一般将该数据结构嵌入到其他的数据结构中,从而使得内核可以通过链表的方式管理新的数据结构,看一个例子:

struct example {
        member a;
        struct list_head list;
        member b;
    };

1、链表的定义和初始化

您可以通过两种方式来定义和初始化一个链表头结点,例如,您想定义一个链表头结点mylist,那么您可以这么做:

① LIST_HEAD(mylist);  // 使用LIST_HEAD宏定义并初始化一个链表

也可以这么做:

② struct list_head mylist;  // 定义一个链表

INIT_LIST_HEAD(&mylist); // 使用INIT_LIST_HEAD函数初始化链表

可以看出方式①稍微简单一点,我们先来分析一下LIST_HEAD宏:

#define LIST_HEAD_INIT(name) { &(name), &(name) }
    #define LIST_HEAD(name) /
         struct list_head name = LIST_HEAD_INIT(name)

很容易看出LIST_HEAD(mylist);会被扩展为:

struct list_head mylist = { &(mylist), &(mylist) };

list_head结构只有两个成员:next和prev。从上面的代码可以看出,next和prev都被赋值为链表mylist的地址,也就是说,链表初始

化后next和prev都是指向自己的。

大多数情况下,list_head是被嵌入到其他数据结构中的,比如上面的example结构里的list成员,那么如何对list成员进行初始化?通过调用INIT_LIST_HEAD函数:

struct example test;

INIT_LIST_HEAD(&test.list); 
    该函数简单地将list成员的prev和next指针指向自己。

可以看出链表结点在初始化时,都将prev和next指向自己。注意:对链表的初始化非常重要,因为如果使用一个未被初始化的链表结点,很有可能会导致内核异常。例如,在对一个链表结点调用list_del函数后,接着再去对该结点进行一些操作。后面会有分析的:)

2、对链表常用的操作

对链表常用的操作无非就是增加、删除、遍历等。当然内核还提供很多其他的操作,如替换某个结点、将某个结点移动到链表尾端等等,这些操作都是通过调用基本的增加、删除等操作完成的。

① 增加:list_add和list_add_tail
    调用list_add可以将一个新链表结点插入到一个已知结点的后面;

调用list_add_tail可以将一个新链表结点插入到一个已知结点的前面;

下面分析它们的具体实现,它们都以不同的参数调用了相同的函数__list_add:
    static inline void __list_add(struct list_head *new,
             struct list_head *prev,
             struct list_head *next)
    {
         next->prev = new;
         new->next = next;
         new->prev = prev;
         prev->next = new;
    }
    该函数将new结点插入到prev结点和next之间;

static inline void list_add(struct list_head *new, struct list_head *head)
    {
         __list_add(new, head, head->next);
    }
    list_add函数中以new、head、head->next为参数调用__list_add,将new结点插入到head和head->next之间,也就是将new结点插入到特定的已知结点head的后面;

static inline void list_add_tail(struct list_head *new, struct list_head *head)
    {
         __list_add(new, head->prev, head);
    }
    而list_add_tail函数则以new、head->prev、head为参数调用__list_add,将new结点插入到head->prev和head之间,也就是将new结点插入到特定的已知结点head的前面。

有了list_add和list_add_tail,我们可以很方便地实现栈(list_add)和队列(list_add_tail),在本文的最后一节,我们再做详细的分析。

② 删除:list_del和list_del_init

调用list_del函数删除链表中的一个结点;

调用list_del_init函数删除链表中的一个结点,并初始化被删除的结点(也就是使被删除的结点的prev和next都指向自己);

下面分析它们的具体实现,它们都调用了相同的函数__list_del:
    static inline void __list_del(struct list_head * prev, struct list_head * next)
    {
         next->prev = prev;
         prev->next = next;
    }
    该函数实际的作用是让prev结点和next结点互相指向;

static inline void list_del(struct list_head *entry)
    {
         __list_del(entry->prev, entry->next);
         entry->next = LIST_POISON1;
         entry->prev = LIST_POISON2;
    }
    该函数中以entry->prev和entry->next为参数调用__list_del函数,使得entry结点的前、后结点绕过entry直接互相指向,然后将entry结点的前后指针指向LIST_POISON1和LIST_POISON2,从而完成对entry结点的删除。此函数中的LIST_POISON1和LIST_POISON2有点让人费解,因为一般情况下我们删除entry后,应该让entry的prev和next指向NULL的,可是这里却不是,原因有待调查。

static inline void list_del_init(struct list_head *entry)
    {
         __list_del(entry->prev, entry->next);
         INIT_LIST_HEAD(entry);
    }
    与list_del不同,list_del_init将entry结点删除后,还会对entry结点做初始化,使得entry结点的prev和next都指向自己。

3、几个重要的宏

内核提供了一组宏,以方便对链表进行管理,下面我只介绍到目前为止,我遇到过的,可能会很少,因为我接触到的很有限,以后遇到其他的会添加进来的。下面开始我们的分析啦:)

① list_entry

前面说过,list_head结构通常被嵌入到其他数据结构中,以便内核可以通过链表的方式管理这些数据结构。假设这样一种场景:我们已知类型为example的对象的list成员的地址ptr(struct list_head *ptr),那么我们如何通过ptr来得到该example对象的地址呢?答案很明显,使用container_of宏。不过,在这样的情况下我们应该通过使用list_entry宏来完成container_of宏的功能,因为这样更容易理解一点。其实list_entry宏很简单:#define list_entry(ptr, type, member)  container_of(ptr, type, member) ......

上述情况,我们可以这样: list_entry(ptr, struct example, list); 来获取example对象的指针。

② list_for_each_entry

对链表的一个重要的操作就是对链表进行遍历,以达到某种应用目的,比如统计链表结点的个数等等。先来看看内核中对该宏的定义:

#define list_for_each_entry(pos, head, member)    /
         for (pos = list_entry((head)->next, typeof(*pos), member); /
               prefetch(pos->member.next), &pos->member != (head);  /
               pos = list_entry(pos->member.next, typeof(*pos), member))

其中,pos是指向宿主结构的指针,在for循环中是一个迭代变量;head是要进行遍历的链表头指针;member是list_head成员在宿主结构中的名字。

原文地址:https://www.cnblogs.com/bully/p/9049054.html

时间: 2024-10-14 19:56:21

内核链表函数详解的相关文章

linux中fork()函数详解[zz]

转载自:http://www.cnblogs.com/york-hust/archive/2012/11/23/2784534.html 一.fork入门知识 一个进程,包括代码.数据和分配给进程的资源.fork()函数通过系统调用创建一个与原来进程几乎完全相同的进程,也就是两个进程可以做完全相同的事,但如果初始参数或者传入的变量不同,两个进程也可以做不同的事. 一个进程调用fork()函数后,系统先给新的进程分配资源,例如存储数据和代码的空间.然后把原来的进程的所有值都复制到新的新进程中,只有

C++ list容器系列功能函数详解

C++ list函数详解 首先说下eclipse工具下怎样debug:方法:你先要设置好断点,然后以Debug方式启动你的应用程序,不要用run的方式,当程序运行到你的断点位置时就会停住,也会提示你进入到Debug视图方式操作,F5是进入到函数或语句块的内部,F6是单步运行,一行一行的走,F7可以跳当前监听函数或语句块F8 会直接跳到下个断点. 下面进入主题: 一.构造.析构函数.= 运算符 1.功能:声明list容器.4种方式 list<int> first;                

fork( )函数详解

 一.fork入门知识 一个进程,包括代码.数据和分配给进程的资源.fork()函数通过系统调用创建一个与原来进程几乎完全相同的进程, 也就是两个进程可以做完全相同的事,但如果初始参数或者传入的变量不同,两个进程也可以做不同的事. 一个进程调用fork()函数后,系统先给新的进程分配资源,例如存储数据和代码的空间.然后把原来的进程的所有值都 复制到新的新进程中,只有少数值与原来的进程的值不同.相当于克隆了一个自己. 我们来看一个例子: /* *  fork_test.c *  version 1

fork()函数详解

linux中fork()函数详解(原创!!实例讲解) (转载)  一.fork入门知识 一个进程,包括代码.数据和分配给进程的资源.fork()函数通过系统调用创建一个与原来进程几乎完全相同的进程, 也就是两个进程可以做完全相同的事,但如果初始参数或者传入的变量不同,两个进程也可以做不同的事. 一个进程调用fork()函数后,系统先给新的进程分配资源,例如存储数据和代码的空间.然后把原来的进程的所有值都 复制到新的新进程中,只有少数值与原来的进程的值不同.相当于克隆了一个自己. 我们来看一个例子

Linux系统调用--getrlimit()与setrlimit()函数详解

http://www.cnblogs.com/niocai/archive/2012/04/01/2428128.html 功能描述:获取或设定资源使用限制.每种资源都有相关的软硬限制,软限制是内核强加给相应资源的限制值,硬限制是软限制的最大值.非授权调 用进程只可以将其软限制指定为0~硬限制范围中的某个值,同时能不可逆转地降低其硬限制.授权进程可以任意改变其软硬限制.RLIM_INFINITY的 值表示不对资源限制. 用法: #include <sys/resource.h>int getr

Yahoo Web 应用性能及linux内核优化黄金法则详解

Web 应用性能优化黄金法则:先优化前端程序(front-end) 的性能,因为这是80% 或以上的最终用户响应时间的花费所在. 法则1. 减少HTTP 请求次数80%的最终用户响应时间花在前端程序上,而其大部分时间则花在各种页面元素,如图像.样式表.脚本和Flash等,的下载上.减少页面元素将会减少HTTP请求次数.这是快速显示页面的关键所在.一种减少页面元素个数的方法是简化页面设计.但是否存在其他方式,能做到既有丰富内容,又能获得快速响应时间呢?以下是这样一些技术:Image maps 组合

Linux内核ROP姿势详解(二)

/* 很棒的文章,在freebuf上发现了这篇文章上部分的翻译,但作者貌似弃坑了,顺手把下半部分也翻译了,原文见文尾链接 --by JDchen */ 介绍 在文章第一部分,我们演示了如何找到有用的ROP gadget并为我们的系统(3.13.0-32 kernel –Ubuntu 12.04.5 LTS)建立了一个提权ROP链的模型.我们同时也开发了一个有漏洞的内核驱动来允许实现执行任意代码.在这一部分,我们将会使用这个内核模块来开发一个具有实践意义的ROP链:提权,修复系统,纯净退出到用户空

可变参数函数详解

可变参数函数又称参数个数可变函数(本文也简称变参函数),即函数参数数目可变.原型声明格式为: type VarArgFunc(type FixedArg1, type FixedArg2, -); 其中,参数可分为两部分:数目确定的固定参数和数目可变的可选参数.函数至少需要一个固定参数,其声明与普通函数参数相同:可选参数由于数目不定(0个或以上),声明时用"-"表示("-"用作参数占位符).固定参数和可选参数共同构成可变参数函数的参数列表. 由于参数数目不定,使用可

Linux wait函数详解

Linux wait函数详解 wait和waitpid出现的原因 SIGCHLD --当子进程退出的时候,内核会向父进程SIGCHLD信号,子进程的退出是个异步事件(子进程可以在父进程运行的任何时刻终止) --子进程退出时,内核将子进程置为僵尸状态,这个进程成为僵尸进程,它只保留最小的一些内核数据结构,以便父进程查询子进程的退出状态 --父进程查询子进程的退出状态可以用wait/waitpid函数 wait获取staus后检测处理 宏定义 描述 WIFEXITED(status) 如果进程子进程