机器学习二分类模型评价指标:准确率\召回率\特异度等

混淆矩阵是一种用于性能评估的方便工具,它是一个方阵,里面的列和行存放的是样本的实际类vs预测类的数量。

P =阳性,N =阴性:指的是预测结果。

T=真,F=假:表示 实际结果与预测结果是否一致,一致为真,不一致为假。

TP=真阳性:预测结果为P,且实际与预测一致。

FP=假阳性:预测结果为P,但与实际不一致。

TN=真阴性:预测结果为N,且与实际一致。

FN=假阴性:预测结果为N,但与实际不一致。

分类模型的经验误差可以通过计算1-准确率得到。

然而,如何选择一个适当的预测误差度量是高度依赖于具体问题的。在“垃圾邮件”分类的情况中,我们更加关注的是低误报率。当然,垃圾邮件被分成了火腿肯定是烦人的,但不是那么糟糕。要是一封邮件被误分为垃圾邮件,而导致重要信息丢失,那才是更糟糕的呢。

在如“垃圾邮件”分类的二元分类问题中,有一种方便的方式来调整分类器,称为接受者操作特性(ROC或ROC曲线)。该曲线对应精密性Precision,对应着预测值为阳性的数据中正确的比例。

AUC的含义:ROC曲线下的面积(越大越好,1为理想状态)

ROC(Receiver Operating Characteristic)



 

准确率Accuracy

正确分类的样本占总样本的比例,对总体准确率的评估。

公式:(TP+TN)/(P+N)。即,对阳性和阴性,总体(分母P+N)预测对了多少(分子TP+TN)。

注:准确率是我们最常见的评价指标,而且很容易理解,就是被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好。 
准确率确实是一个很好很直观的评价指标,但是有时候准确率高并不能代表一个算法就好。比如某个地区某天地震的预测,假设我们有一堆的特征作为地震分类的属性,类别只有两个:0:不发生地震、1:发生地震。一个不加思考的分类器,对每一个测试用例都将类别划分为0,那那么它就可能达到99%的准确率,但真的地震来临时,这个分类器毫无察觉,这个分类带来的损失是巨大的。为什么99%的准确率的分类器却不是我们想要的,因为这里数据分布不均衡,类别1的数据太少,完全错分类别1依然可以达到很高的准确率却忽视了我们关注的东西。再举个例子说明下。在正负样本不平衡的情况下,准确率这个评价指标有很大的缺陷。比如在互联网广告里面,点击的数量是很少的,一般只有千分之几,如果用acc,即使全部预测成负类(不点击)acc也有 99% 以上,没有意义。因此,单纯靠准确率来评价一个算法模型是远远不够科学全面的。

错误率(Error rate)

错误率则与准确率相反,描述被分类器错分的比例,error rate = (FP+FN)/(TP+TN+FP+FN),对某一个实例来说,分对与分错是互斥事件,所以accuracy =1 - error rate。

灵敏度Sensitivity(查全率/召回率Recall)

对“真阳性率”预测的评估,也就是对“阳性/真”预测准确的概率(比如,当试图预测某种疾病的时候,如果一个病人长了这种病,那么正确的预测出这个人长了这种病,就是“阳性/真”)。

查全率关心的是”预测出正例的保证性”即从正例中挑选出正例的问题。

灵敏度表示的是所有正例中被分对的比例,衡量了分类器对正例的识别能力。召回率是覆盖面的度量,度量有多个正例被分为正例,与灵敏度相等。

公式:TP/(TP+FN)。即,实际为阳性P(分母TP+FN),其中预测正确的比例(分子TP)。

精密性(精确率/精度/查准率)Precision

对“真阳性率”预测的评估。

查准率关心的是”预测出正例的正确率”即从正反例子中挑选出正例的问题。

表示被分为正例的示例中实际为正例的比例。

公式:TP/(TP+FP)。即,预测为阳性的数据(分母TP+FP)中,实际对了多少(分子TP)。

特异性Specificity

描述了二元分类问题中的“真阴性率”:这指的是对“真/阴性”情况作出正确预测的概率(例如,在试图预测疾病时,对一个健康者,没有预测到疾病,就是这种情况)。

表示的是所有负例中被分对的比例,衡量了分类器对负例的识别能力。

公式:TN/(TN+FP)。即,实际为阴性N(分母TN+FP),其中预测正确的比例(分子TN)。

综合评价指标(F-Measure)

灵敏度Sensitivity(查全率/召回率Recall)精密性(精确率、精度)Precision这两个指标有时候会出现的矛盾的情况,这样就需要综合考虑他们,最常见的方法就是F-Measure(又称为F-Score)。两者一般存在矛盾关系,不能都达到很高的值,所以定义F-score评价综合标准。如下图,查准率-查全率曲线(P-R图):

F-Measure是Precision(P)和Recall(R)加权调和平均:

当参数α=1时,就是最常见的F1,也即

可知F1综合了P和R的结果,当F1较高时则能说明试验方法比较有效。



其他评价指标

计算速度:分类器训练和预测需要的时间;

鲁棒性:处理缺失值和异常值的能力;

可扩展性:处理大数据集的能力;

可解释性:分类器的预测标准的可理解性,像决策树产生的规则就是很容易理解的,而神经网络的一堆参数就不好理解,我们只好把它看成一个黑盒子。

原文地址:https://www.cnblogs.com/xianhan/p/9277194.html

时间: 2024-11-09 06:10:33

机器学习二分类模型评价指标:准确率\召回率\特异度等的相关文章

准确率,召回率,F值,ROC,AUC

度量表 1.准确率 (presion) p=TPTP+FP 理解为你预测对的正例数占你预测正例总量的比率,假设实际有90个正例,10个负例,你预测80(75+,5-)个正例,20(15+,5-)个负例 实际上你的准确率为75/80=0.9375,但这个评价指标有什么问题呢,想想就知道,这里你并没有用到实际的正例数,那么仅仅靠你猜中的正例作为分母,你并不知道实际的正例有多少,你看召回率为75/90=0.83,就是说你的猜测局限于预测范围 2.召回率 (recall)r=TPTP+FN 理解为你预测

机器学习基础 | 分类模型评估指标

目录 成对指标 综合指标 图形指标 在处理机器学习的分类问题中,我们需要评估分类结果的好坏以选择或者优化模型,本文总结二分类任务中常用的评估指标.对于多分类任务的评估指标,可以参考这篇文章 先从我们最熟知的混淆矩阵(confusion matrix)说起. source 鉴于混淆矩阵看着比较抽象,可以参考下图 常用的评估指标可以分为3类: 成对指标,包括正确率(精度)&错误率,Precision&Reall,TPR(Sentitivity)&TNR(Specificity)等; 综

二分类模型评估指标

分类结果混淆矩阵(confusion matrix): 真实\预测 正例 反例 正例 TP FN 反例 FP TN 1.准确率--accuracy 定义:对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.计算方法: 2.精确率--precision(P)定义:被判定为正例(反例)的样本中,真正的正例样本(反例样本)的比例.计算方法: 3.召回率--recall(R)定义:被正确分类的正例(反例)样本,占所有正例(反例)样本的比例.计算方法: 4.F1_score定义:基于精确率和召回率

机器学习中---分类模型--决策树模型

决策树模型 决策树(DecisionTree, DT)是一种常见的用于分类和回归的非参数监督学习方法,目标是创建一个模型,通过从数 据特性中推导出简单的决策规则来预测目标变量的值.决策树模型的优点在于:1,简单容易理解,数据结构可以可视化表达.2,需要很少的数据准备,其他技术通常需 要数据标准化,需要创建虚拟变量,并删除空白值.3,能够处理多输出问题. 决策树模型的缺点在于:1,决策树学习可能会生成过于复杂的数结构,不能代表普遍的规则,即模型容易过拟 合,修剪机制,设置叶子节点所需的最小样本数目

信息检索的评价指标、准确率、召回率

信息检索(IR)的评价指标介绍 - 准确率.召回率.F1.mAP.ROC.AUC 分类: 1.自然语言处理/机器学习 2011-07-06 22:15 9817人阅读 评论(7) 收藏 举报 performance算法fp工具2010c 在信息检索.分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常重要,因此最近根据网友的博客做了一个汇总. 准确率.召回率.F1 信息检索.分类.识别.翻译等领域两个最基本指标是召回率(Recall Rate)和准确率(Precision Rat

准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure

yu Code 15 Comments 机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accuracy),精确率(Precision),召回率(Recall)和F1-Measure.(注: 相对来说,IR 的 ground truth 很多时候是一个 Ordered List, 而不是一个 Bool 类型的 Unordered Collection,在都找到的情况下,排在第三名还是第四名损失并

机器学习第二周-模型评价(I)

对于新建的模型,如何评价其好坏,以及自身的泛化能力,是机器学习中一个关键性问题.对于二分类模型,因原始数据可能是非平衡的,因此仅通过最后的预测准确率并不能评价模型的效果,对于机器学习中的分类与回归两大类模型,需采用不同的模型评价指标. 一?分类模型 1.混淆矩阵及F1分数 混淆矩阵(confusion matrix)实际是一张表格,因其能够很容易的看出机器学习有没有将样本的类别给混淆,故称之为混淆矩阵,以下为二分类的问题为例,其对应的混淆矩阵如下: 正例为positive,负例为negative

二分类算法评估指标

我们都知道机器学习要建模,但是对于模型性能的好坏我们并不知道是怎样的,很可能这个模型就是一个差的模型,对测试集不能很好的预测.那么如何知道这个模型是好是坏呢?必须有个评判的标准,需要用某个指标来衡量,这就是性能度量的意义.有了一个指标,就可以对比不同模型了,从而知道哪个模型更好,或者通过这个指标来调参优化选用的模型. 对于分类.回归.聚类等,分别有各自的评判标准.本篇主要介绍二分类算法(多分类可以扩展转化成二分类)的相关指标.评估一个二分类的分类器的性能指标有:准确率.查准率.查全率.F1值.A

分类模型评估

一直对于各种分类器评估的指标有点晕,今天决定琢磨下,并且写下来,方便以后回忆. 一.混淆矩阵 来源于信息论,根据上面的混淆矩阵,有3个指标需要搞清楚,我觉得记公式真的很容易搞混,建议大家都直接记文字加上自己理解就好了. 准确率=正确预测正负的个数/总个数(这个指标在python中的交叉验证时可以求准确率) 覆盖率(也叫作召回率)=正确预测正的个数/实际正的个数 (当然也可以是负覆盖率) 命中率=正确预测正的个数/预测正的个数 以上指标,在Python中提供混淆矩阵的报告 二.ROC 之所以又有R