一、前述
维基百科中的机器人是指主要用于协助编者执行大量自动化、高速或机械式、繁琐的编辑工作的计算机程序或脚本及其所登录的帐户。
二、具体
1、最简单的就是基于Rule-Base的聊天机器人。
也就是计算设计好语料库的问答语句。 就是小学生级别的 问什么 答什么
import random # 打招呼 greetings = [‘hola‘, ‘hello‘, ‘hi‘, ‘Hi‘, ‘hey!‘,‘hey‘] # 回复打招呼 random_greeting = random.choice(greetings) # 对于“你怎么样?”这个问题的回复 question = [‘How are you?‘,‘How are you doing?‘] # “我很好” responses = [‘Okay‘,"I‘m fine"] # 随机选一个回 random_response = random.choice(responses) # 机器人跑起来 while True: userInput = input(">>> ") if userInput in greetings: print(random_greeting) elif userInput in question: print(random_response) # 除非你说“拜拜” elif userInput == ‘bye‘: break else: print("I did not understand what you said")
结果:
>>> hi hey >>> how are u I did not understand what you said >>> how are you I did not understand what you said >>> how are you? I did not understand what you said >>> How are you? I‘m fine >>> bye
2、升级I:
显然 这样的rule太弱智了,我们需要更好一点的“精准对答”,比如 透过关键词来判断这句话的意图是什么(intents)。
from nltk import word_tokenize import random # 打招呼 greetings = [‘hola‘, ‘hello‘, ‘hi‘, ‘Hi‘, ‘hey!‘,‘hey‘] # 回复打招呼 random_greeting = random.choice(greetings) # 对于“假期”的话题关键词 question = [‘break‘,‘holiday‘,‘vacation‘,‘weekend‘] # 回复假期话题 responses = [‘It was nice! I went to Paris‘,"Sadly, I just stayed at home"] # 随机选一个回 random_response = random.choice(responses) # 机器人跑起来 while True: userInput = input(">>> ") # 清理一下输入,看看都有哪些词 cleaned_input = word_tokenize(userInput) # 这里,我们比较一下关键词,确定他属于哪个问题 if not set(cleaned_input).isdisjoint(greetings): print(random_greeting) elif not set(cleaned_input).isdisjoint(question): print(random_response) # 除非你说“拜拜” elif userInput == ‘bye‘: break else: print("I did not understand what you said")
>>> hi hey >>> how was your holiday? It was nice! I went to Paris >>> wow, amazing! I did not understand what you said >>> bye
大家大概能发现,这依旧是文字层面的“精准对应”。现在主流的研究方向,是做到语义层面的对应。比如,“肚子好饿哦”, “饭点到了”,应该表示的是要吃饭了的意思。在这个层面,就需要用到word vector之类的embedding方法,这部分内容 日后的课上会涉及到。
3、升级II:
光是会BB还是不行,得有知识体系!才能解决用户的问题。我们可以用各种数据库,建立起一套体系,然后通过搜索的方式,来查找答案。比如,最简单的就是Python自己的graph数据结构来搭建一个“地图”。依据这个地图,我们可以清楚的找寻从一个地方到另一个地方的路径,然后作为回答,反馈给用户。
# 建立一个基于目标行业的database # 比如 这里我们用python自带的graph graph = {‘上海‘: [‘苏州‘, ‘常州‘], ‘苏州‘: [‘常州‘, ‘镇江‘], ‘常州‘: [‘镇江‘], ‘镇江‘: [‘常州‘], ‘盐城‘: [‘南通‘], ‘南通‘: [‘常州‘]} # 明确如何找到从A到B的路径 def find_path(start, end, path=[]): path = path + [start] if start == end: return path if start not in graph: return None for node in graph[start]: if node not in path: newpath = find_path(node, end, path) if newpath: return newpath return None
print(find_path(‘上海‘, "镇江"))
[‘上海‘, ‘苏州‘, ‘常州‘, ‘镇江‘]
同样的构建知识图谱的玩法,也可以使用一些Logic Programming,比如上个世纪学AI的同学都会学的Prolog。或者比如,python版本的prolog:PyKE。他们可以构建一种复杂的逻辑网络,让你方便提取信息,而不至于需要你亲手code所有的信息:
son_of(bruce, thomas, norma) son_of(fred_a, thomas, norma) son_of(tim, thomas, norma) daughter_of(vicki, thomas, norma) daughter_of(jill, thomas, norma)
4、升级III:
任何行业,都分个前端后端。AI也不例外。我们这里讲的算法,都是后端跑的。那么, 为了做一个靠谱的前端,很多项目往往也需要一个简单易用,靠谱的前端。比如,这里,利用Google的API,写一个类似钢铁侠Tony的语音小秘书Jarvis:我们先来看一个最简单的说话版本。利用gTTs(Google Text-to-Speech API), 把文本转化为音频。
from gtts import gTTS import os tts = gTTS(text=‘您好,我是您的私人助手,我叫小辣椒‘, lang=‘zh-tw‘) tts.save("hello.mp3") os.system("mpg321 hello.mp3")
同理,有了文本到语音的功能,我们还可以运用Google API读出Jarvis的回复:
(注意:这里需要你的机器安装几个库 SpeechRecognition, PyAudio 和 PySpeech)
import speech_recognition as sr from time import ctime import time import os from gtts import gTTS import sys # 讲出来AI的话 def speak(audioString): print(audioString) tts = gTTS(text=audioString, lang=‘en‘) tts.save("audio.mp3") os.system("mpg321 audio.mp3") # 录下来你讲的话 def recordAudio(): # 用麦克风记录下你的话 r = sr.Recognizer() with sr.Microphone() as source: audio = r.listen(source) # 用Google API转化音频 data = "" try: data = r.recognize_google(audio) print("You said: " + data) except sr.UnknownValueError: print("Google Speech Recognition could not understand audio") except sr.RequestError as e: print("Could not request results from Google Speech Recognition service; {0}".format(e)) return data # 自带的对话技能(rules) def jarvis(): while True: data = recordAudio() if "how are you" in data: speak("I am fine") if "what time is it" in data: speak(ctime()) if "where is" in data: data = data.split(" ") location = data[2] speak("Hold on Tony, I will show you where " + location + " is.") os.system("open -a Safari https://www.google.com/maps/place/" + location + "/&") if "bye" in data: speak("bye bye") break # 初始化 time.sleep(2) speak("Hi Tony, what can I do for you?") # 跑起 jarvis()
Hi Tony, what can I do for you? You said: how are you I am fine You said: what time is it now Fri Apr 7 18:16:54 2017 You said: where is London Hold on Tony, I will show you where London is. You said: ok bye bye bye bye
不仅仅是语音前端。包括应用场景:微信,slack,Facebook Messager,等等 都可以把我们的ChatBot给integrate进去。
原文地址:https://www.cnblogs.com/LHWorldBlog/p/9278918.html