吴恩达《深度学习》第一门课(1)深度学习引言

1.1欢迎

主要讲了五门课的内容:

第一门课:神经网络基础,构建网络等;

第二门课:神经网络的训练技巧;

第三门课:构建机器学习系统的一些策略,下一步该怎么走(吴恩达老师新书《Machine Learning Yearning》就是针对这个以及上一课);

第四门课:卷积神经网络相关;

第五门课:循环神经网络相关。

1.2什么是神经网络

(1)常说的深度学习指的就是训练神经网络,或者也指特别大规模的神经网络。

(2)每一个神经元都代表着从输入到输出的函数映射,如下的房价预测:

(3)激活函数Relu(Rectified Linear Unit)其实就是max(0,x)。

(4)神经网络非常擅长计算从x到y的精确映射函数(个人理解:神经网络实质就是非线性的多项式拟合),神经网络的输入单元个数一般是特征个数,中间称为隐藏层,然后输出单元个数依据实际情况而定,如下输出是房价的预测值,故是一个神经元。

1.3神经网络的监督学习

(1)神经网络在监督学习上的应用:

(2)数据包括结构化数据和非结构化数据,图像语言语音都是非结构化数据,是神经网络要研究解决的重点。

1.4为什么深度学习会兴起

(1)三点原因:数据规模大、计算速度提高、算法的创新。事实上如今提高性能最可靠的方法就是运用更大的神经网络和投入更多的数据。下图展示了数据量、模型大小与性能之间的关系:

(2)算法创新的一个小案例:激活函数从sigmoid(存在梯度消失)变成ReLU,训练的速度变得更快了。

(3)在实践应该按照下图方式进行快速迭代:

1.5关于这么课

总共四周,分别是前言,预备知识,浅层神经网络和深层神经网络。

1.6课程资源

原文地址:https://www.cnblogs.com/ys99/p/9279986.html

时间: 2024-10-16 00:26:43

吴恩达《深度学习》第一门课(1)深度学习引言的相关文章

吴恩达 Deep learning 第一周 深度学习概论

知识点 1. Relu(Rectified Liner Uints 整流线性单元)激活函数:max(0,z) 神经网络中常用ReLU激活函数,与机器学习课程里面提到的sigmoid激活函数相比有以下优点: 1.simoid激活函数具有饱和性,通常不适用simoid作为激活函数 2.ReLU的收敛速度更快 2.常见监督学习应用场景 3.结构化数据与非结构化数据 结构化数据,结构化的数据是指可以使用关系型数据库表示和存储,表现为二维形式的数据.一般特点是:数据以行为单位,一行数据表示一个实体的信息,

Coursera-AndrewNg(吴恩达)机器学习笔记——第一周

一.初识机器学习 何为机器学习?A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.理解:通过实验E,完成某一项任务T,利用评价标准P对实验结果进行迭代优化! 机器学习主要包括监督学习

吴恩达《深度学习》-课后测验-第一门课 (Neural Networks and Deep Learning)-Week 4 - Key concepts on Deep Neural Networks(第四周 测验 – 深层神经网络)

Week 4 Quiz - Key concepts on Deep Neural Networks(第四周 测验 – 深层神经网络) \1. What is the "cache" used for in our implementation of forward propagation and backward propagation?(在实现前向传播和反向传播中使用的"cache"是什么?) [ ]It is used to cache the interme

【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】

[吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和"AI是新电力"相类似的说法是什么? [ ?]AI为我们的家庭和办公室的个人设备供电,类似于电力. [ ?]通过"智能电网",AI提供新的电能. [?]AI在计算机上运行,??并由电力驱动,但是它正在让以前的计算机不能做的事情变为可能. [★]就像100年前产生电能一样,AI正在改变很多的行业. 请注意: 吴恩达在视频中表达了同样的观点. 哪些是深度学

李飞飞、吴恩达、Bengio等人的15大顶级深度学习课程

目前,深度学习和深度强化学习已经在实践中得到了广泛的运用.资源型博客sky2learn整理了15个深度学习和深入强化学习相关的在线课程,其中包括它们在自然语言处理(NLP),计算机视觉和控制系统中的应用教程. 这些课程涵盖了神经网络,卷积神经网络,循环网络和其变体,训练深度网络的困难,无监督表示学习,深度信念网络,深玻尔兹曼机器,深度Q学习,价值函数估计和优化以及蒙特卡洛树搜索等多种算法的基础知识. 吴恩达:深度学习专项 这系列课程侧重于讲解深度学习的基础和在不同领域的运用方式,如医疗健康,自动

吴恩达 DeepLearning.ai课程笔记(1-3)神经网络和深度学习 --- 浅层神经网络

以下为在Coursera上吴恩达老师的DeepLearning.ai课程项目中,第一部分<神经网络和深度学习>第二周课程部分关键点的笔记.笔记并不包含全部小视频课程的记录,如需学习笔记中舍弃的内容请至 Coursera 或者 网易云课堂.同时在阅读以下笔记之前,强烈建议先学习吴恩达老师的视频课程. 1. 二分类问题 对于二分类问题,大牛给出了一个小的Notation. 样本:  ,训练样本包含  个: 其中  ,表示样本 包含 个特征:  ,目标值属于0.1分类: 训练数据:  输入神经网络时

吴恩达深度学习:1.2什么是神经网络

写在开头的话,本博客内容全部来自吴恩达深度学习教学课程,插图均来自吴恩达课件,在此说明来处,不喜勿喷! 一.什么是神经网络 1.我们从一个房屋加个预测的例子开始,假设有一个6间房间的数据集,已知房屋的面积单位是平方米或者平方英尺,已知房屋加个,现在想要找到一个函数,根据房屋面积来预测房屋价格的函数.如果有机器学习的只是,可以用线性回归得到这样的一条直线: 但是我们知道,价格永远不可能为一个负值,所以用一个直线的线性回归进行预测不太合适,我们可以在size轴将预测线弯曲一点,让他结束于0,我们所要

吴恩达第二课第二周编程实例

吴恩达第2课第2周编程习题 目标:使用mini-batch来加快学习速度:比较梯度下降,momentum,adam的效果 核心:指数加权平均值得计算及其意义,它是momentum,RMSProp,Adam算法的基石 不足:本例程没有使用学习率衰减的步骤,同时本例程只适于3层的二分法的神经网络 常记点: 1. 偏差修正时是除以,此处是-,t从1开始: 2. L=len(parameters) //2 ,这个L不等于网络层数,range(1,L+1)=range(1,len(layers_dims)

吴恩达《AI For Everyone》_练习英语翻译_待更新

AI For Everyone https://www.coursera.org/learn/ai-for-everyone 讲师: Andrew Ng (吴恩达) CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain Landing.AI CEO /