hdu 1568 Fibonacci (数论)

Fibonacci

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 3654    Accepted Submission(s): 1671

Problem Description

2007年到来了。经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列

(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来。

接下来,CodeStar决定要考考他,于是每问他一个数字,他就要把答案说出来,不过有的数字太长了。所以规定超过4位的只要说出前4位就可以了,可是CodeStar自己又记不住。于是他决定编写一个程序来测验zouyu说的是否正确。

Input

输入若干数字n(0 <= n <= 100000000),每个数字一行。读到文件尾。

Output

输出f[n]的前4个数字(若不足4个数字,就全部输出)。

Sample Input

0
1
2
3
4
5
35
36
37
38
39
40

Sample Output

0
1
1
2
3
5
9227
1493
2415
3908
6324
1023

解析:数论题,智商不够,就把网上大神的整理的思路简述一下。

用到了斐波那契数列的通项公式。

先看对数的性质,loga(b^c)=c*loga(b),loga(b*c)=loga(b)+loga(c);

假设给出一个数10234432,那么log10(10234432)=log10(1.0234432*10^7)=log10(1.0234432)+7;

log10(1.0234432)就是log10(10234432)的小数部分.

log10(1.0234432)=0.010063744

10^0.010063744=1.023443198

那么要取几位就很明显了吧~

先取对数(对10取),然后得到结果的小数部分bit,pow(10.0,bit)以后如果答案还是<1000那么就一直乘10。

注意偶先处理了0~20项是为了方便处理~

这题要利用到数列的公式:an=(1/√5) * [((1+√5)/2)^n-((1-√5)/2)^n](n=1,2,3.....)

取完对数

log10(an)=-0.5*log10(5.0)+((double)n)*log(f)/log(10.0)+log10(1-((1-√5)/(1+√5))^n)其中f=(sqrt(5.0)+1.0)/2.0;

log10(1-((1-√5)/(1+√5))^n)->0

所以可以写成log10(an)=-0.5*log10(5.0)+((double)n)*log(f)/log(10.0);

最后取其小数部分。

AC代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
int f[21] = {0, 1, 1};

int main()
{
//    freopen("in.txt", "r", stdin);
	int n;
	for(int i = 2; i < 21; ++i)
		f[i] = f[i - 1] + f[i - 2];
	while(scanf("%d", &n) != EOF)
	{
		if(n <= 20)
		{
			printf("%d\n", f[n]);
			continue;
		}
		else
		{
			double temp = -0.5 * log(5.0) / log(10.0) + ((double)n) * log((sqrt(5.0)+1.0)/2.0) / log(10.0);
			temp -= floor(temp);
			temp = pow(10.0, temp);
			while(temp < 1000)
				temp *= 10;
			printf("%d\n", (int)temp);
		}
	}
	return 0;
}

呜呜呜~~~数论题,真是数学不好,硬伤啊。。。

时间: 2024-10-03 23:53:44

hdu 1568 Fibonacci (数论)的相关文章

hdu 1568 Fibonacci

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1568 数学....囧...害我低沉了好几天提不起劲做题. 用到了斐波那契数列的通项公式. 先看对数的性质,loga(b^c)=c*loga(b),loga(b*c)=loga(b)+loga(c); 假设给出一个数10234432,那么log10(10234432)=log10(1.0234432*10^7)=log10(1.0234432)+7;log10(1.0234432)就是log10(10

HDU 1568 Fibonacci【求斐波那契数的前4位/递推式】

Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列 (f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来. 接下来,CodeStar决定要考考他,于是每问他一

[hdu 1568] Fibonacci数列前4位

2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列(f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来.接下来,CodeStar决定要考考他,于是每问他一个数字,他就要把答案说出来,不过有的数字太长了.所以规定超过4位的只要说出前4位就可以了,可是CodeStar自己又记不住.于是他决定编写一个程序来测验zouyu说的是否正确. Input 输入若干数字n(0 <= n <=

HDU 3117 Fibonacci Numbers(斐波那契前后四位,打表+取对+矩阵快速幂)

HDU 3117 Fibonacci Numbers(斐波那契前后四位,打表+取对+矩阵快速幂) ACM 题目地址:HDU 3117 Fibonacci Numbers 题意: 求第n个斐波那契数的前四位和后四位. 不足8位直接输出. 分析: 前四位有另外一题HDU 1568,用取对的方法来做的. 后四位可以用矩阵快速幂,MOD设成10000就行了. 代码: /* * Author: illuz <iilluzen[at]gmail.com> * Blog: http://blog.csdn.

hdu 5167 Fibonacci(DFS)

hdu 5167 Fibonacci 问题描述 斐波那契数列的递归定义如下: Fi=???01Fi?1+Fi?2i = 0i = 1i > 1 现在我们需要判断一个数是否能表示为斐波那契数列中的数的乘积. 输入描述 有多组数据,第一行为数据组数T(T≤100,000). 对于每组数据有一个整数n,表示要判断的数字. 0≤n≤1,000,000,000 输出描述 对于每组数据,如果可以输出"Yes",否则输出"No". 输入样例 3 4 17 233 输出样例

HDU 4786 Fibonacci Tree 最小生成树变形

思路: 这题比赛的时候想了好久,最后队友机智的想到了. 不过那时不是我敲的,现在敲的1A. 想好就容易了. 直接把1或者0当做边的权值,然后按边从小到大排序,然后算最小生成用到了几条白边,然后再按边从大到小排序,然后再算白边用了几条.然后最小和最大需要用到的白边都算出来了.如果在这最小最大区间中存在那个啥数列的话就是Yes,否则就是No. 为什么在这区间里面就是对的呢?刚开始我也想了好久,然后发现,因为白边权值是1,然后黑边是0,然后假设用到白边最小的是6,最大的是10,那么,我们可以用黑边去替

HDU - 1848 - Fibonacci again and again

先上题目: Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4964    Accepted Submission(s): 2072 Problem Description 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:F(1)=1;F

hdu 3117 Fibonacci Numbers

点击此处即可传送到hdu 3117 **Fibonacci Numbers** Problem Description The Fibonacci sequence is the sequence of numbers such that every element is equal to the sum of the two previous elements, except for the first two elements f0 and f1 which are respectively

hdu 4196(数论)

题意:问小于n的数的乘积能拼成的最大平方数是多少? 思路:给n!做质数分解在除去指数为奇数的那些质数,由于题目中需要模运算所以不能直接除,必须乘上摸逆. 代码如下: 1 /************************************************** 2 * Author : xiaohao Z 3 * Blog : http://www.cnblogs.com/shu-xiaohao/ 4 * Last modified : 2014-06-28 15:26 5 * Fi