HDU 2516 取石子游戏 (博弈论)

取石子游戏

Problem Description

1堆石子有n个,两人轮流取.先取者第1次能够取随意多个,但不能所有取完.以后每次取的石子数不能超过上次取子数的2倍。取完者胜.先取者负输出"Second win".先取者胜输出"First win".

Input

输入有多组.每组第1行是2<=n<2^31. n=0退出.

Output

先取者负输出"Second win". 先取者胜输出"First win".

參看Sample Output.

Sample Input

2
13
10000
0

Sample Output

Second win
Second win
First win

Source

ECJTU 2008 Autumn Contest

解题思路:

这题没法用sg直接求了,数据量太大了,并且sg会受上次的影响,所以不一定。

因此,仅仅能打表找规律,找到规律发现假设满足斐波那契数列 f[n]=f[n-1]+f[n-2] 的数列,Second Win 否则 ,First Win

解题代码:

#include <iostream>
#include <cstdio>
#include <set>
using namespace std;

set <int> mys;

void ini(){
    int f1=1,f2=1,f3=2;
    while(true){
        f3=f1+f2;
        if(f3<=0) break;
        mys.insert(f3);
        f1=f2;
        f2=f3;
    }
}

int main(){
    ini();
    int n;
    while(scanf("%d",&n)!=EOF && n!=0){
        if(mys.find(n)!=mys.end()) printf("Second win\n");
        else printf("First win\n");
    }
    return 0;
}
时间: 2024-10-13 08:51:27

HDU 2516 取石子游戏 (博弈论)的相关文章

HDU 2516 取石子游戏(巴什博弈)

取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2524    Accepted Submission(s): 1443 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win&q

hdu 2516 取石子游戏 Fibonacci博弈 入门题

取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3069    Accepted Submission(s): 1784 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win&q

hdu 2516 取石子游戏

取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2816    Accepted Submission(s): 1626 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win&qu

hdu 2516 取石子游戏 (Fibonacci博弈)

取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 8159    Accepted Submission(s): 4950 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win&qu

HDU 2516 取石子游戏(斐波那契博弈)

题目地址:HDU 2516 当且只当n是一个斐波那契数的时候是必败态.可以写出几组数据找规律就可以发现这个规律. 证明如下: 就像"Wythoff博弈"需要"Beatty定理"来帮忙一样,这里需要借助"Zeckendorf定理"(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和. 先看看FIB数列的必败证明: 1.当i=2时,先手只能取1颗,显然必败,结论成立. 2.假设当i<=k时,结论成立. 则当i=k+1时,

题解报告:hdu 2516 取石子游戏(斐波那契博弈)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2516 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win".先取者胜输出"First win". Input 输入有多组.每组第1行是2<=n<2^31. n=0退出. Output 先取者负输出"S

HDU 2516 取石子游戏 斐波纳契博弈

斐波纳契博弈: 有一堆个数为n的石子,游戏双方轮流取石子,满足: 1)先手不能在第一次把所有的石子取完: 2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍). 约定取走最后一个石子的人为赢家,求必败态. 证明 FBI数为必败局: 1.对于任意一个FBI数 FBI[K]=FBI[K-1]+FBI[K-2],我们可以将FBI[K]看成石子数目分别是FBI[K-1],FBI[K-2]的两堆(一定可以这样分,因为FBI[K-1] > FBI[K-2]*2,若先

HDU 2516 取石子游戏 (斐波那契博弈)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2516 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win".先取者胜输出"First win". Input输入有多组.每组第1行是2<=n<2^31. n=0退出. Output先取者负输出"Second win". 先取者胜输

HDU 1527 取石子游戏 威佐夫博弈

题目来源:HDU 1527 取石子游戏 题意:中文 思路:威佐夫博弈 必败态为 (a,b ) ai + i = bi     ai = i*(1+sqrt(5.0)+1)/2   这题就求出i然后带人i和i+1判断是否成立 以下转自网上某总结 有公式ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,-,n 方括号表示取整函数) 其中出现了黄金分割数(1+√5)/2 = 1.618-,因此,由ak,bk组成的矩形近似为黄金矩形 由于2/(1+√5)=(√5-1)/2,可以先