Minimal Ratio Tree
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2835 Accepted Submission(s): 841
Problem Description
For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation.
Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a tree, which is a sub-graph of the original graph, with m nodes and whose ratio is the smallest among all the trees of m nodes in the graph.
Input
Input contains multiple test cases. The first line of each test case contains two integers n (2<=n<=15) and m (2<=m<=n), which stands for the number of nodes in the graph and the number of nodes in the minimal ratio tree. Two zeros
end the input. The next line contains n numbers which stand for the weight of each node. The following n lines contain a diagonally symmetrical n×n connectivity matrix with each element shows the weight of the edge connecting one node with another. Of course,
the diagonal will be all 0, since there is no edge connecting a node with itself.
All the weights of both nodes and edges (except for the ones on the diagonal of the matrix) are integers and in the range of [1, 100].
The figure below illustrates the first test case in sample input. Node 1 and Node 3 form the minimal ratio tree.
Output
For each test case output one line contains a sequence of the m nodes which constructs the minimal ratio tree. Nodes should be arranged in ascending order. If there are several such sequences, pick the one which has the smallest node
number; if there‘s a tie, look at the second smallest node number, etc. Please note that the nodes are numbered from 1 .
Sample Input
3 2 30 20 10 0 6 2 6 0 3 2 3 0 2 2 1 1 0 2 2 0 0 0
Sample Output
1 3 1 2
转载请申明: http://blog.csdn.net/lionel_d
写代码的时候,,总是犯SB的错误!!!导致wrong了好长时间!!一直以为是精度错了,,o(╯□╰)o
先枚举m个 点,,再求这m个点的最小生成树,,就可以了,,一开始我是先求n个点的最小生成树,再从树上枚举m个点,,,结果老是wrong,后来看别人的题解,,才明白自己的思路错了很严重啊!!!
看代码:
#include <cstdio> #include <cstring> #include <algorithm> #define MAX 20 #define INF 100000000 using namespace std ; int graph[MAX][MAX] , lowCost[MAX] , node[MAX] , path[MAX] , temp[MAX]; int n ,m ; bool cmp(const int a , const int b) { return a<b ; } int prim(int s) { bool visited[MAX] ; memset(visited,false,sizeof(visited)) ; int sum = 0 ; for(int i = 0 ; i < m ; ++i) { lowCost[temp[i]] = graph[s][temp[i]] ; } visited[s] = true ; for(int i = 0 ; i < m-1 ; ++i) { int min = INF , index = -1 ; for(int j = 0 ; j < m ; ++j) { if(!visited[temp[j]] && lowCost[temp[j]]<min) { min = lowCost[temp[j]] ; index = temp[j] ; } } if(index == -1) { break ; } visited[index] = true ; sum += min ; for(int j = 0 ; j < m ; ++j) { if(!visited[temp[j]] && lowCost[temp[j]]>graph[index][temp[j]]) { lowCost[temp[j]] = graph[index][temp[j]] ; } } } return sum ; } double ans = INF*1.0 ; void DFS(int num , int count) { if(count == m) { int sumOfEdge = prim(temp[0]) ,sumOfNode = 0; for(int i = 0 ; i < m ; ++i) { sumOfNode += node[temp[i]] ; } double t = sumOfEdge*1.0/sumOfNode ; if(ans-t>0.00001) { ans = t ; for(int i = 0 ; i < m ; ++i) { path[i] = temp[i] ; } } return ; } for(int i = num+1 ; i <= n ; ++i) { temp[count] = i ; DFS(i,count+1); } } int main() { while(~scanf("%d%d",&n,&m) && (m||n)) { for(int i = 1 ; i <= n ; ++i) { scanf("%d",&node[i]) ; } for(int i = 1 ;i <= n ; ++i ) { for(int j = 1 ; j <= n ; ++j) { scanf("%d",&graph[i][j]) ; } graph[i][i] = INF ; } ans = INF*1.0 ; for(int i = 1 ; i <= n ; ++i) { temp[0] = i ; DFS(i,1); } sort(path,path+m,cmp) ; for(int i = 0 ; i < m ; ++i) { printf("%d",path[i]) ; if(i != m-1) { printf(" ") ; } } puts("") ; } return 0 ; }
与君共勉