hdu 2489 Minimal Ratio Tree DFS枚举点+最小生成树 属于中等偏上题 ,Double比较大小的时候注意精度问题

Minimal Ratio Tree

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2835    Accepted Submission(s): 841

Problem Description

For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation.

Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a tree, which is a sub-graph of the original graph, with m nodes and whose ratio is the smallest among all the trees of m nodes in the graph.

Input

Input contains multiple test cases. The first line of each test case contains two integers n (2<=n<=15) and m (2<=m<=n), which stands for the number of nodes in the graph and the number of nodes in the minimal ratio tree. Two zeros
end the input. The next line contains n numbers which stand for the weight of each node. The following n lines contain a diagonally symmetrical n×n connectivity matrix with each element shows the weight of the edge connecting one node with another. Of course,
the diagonal will be all 0, since there is no edge connecting a node with itself.

All the weights of both nodes and edges (except for the ones on the diagonal of the matrix) are integers and in the range of [1, 100].

The figure below illustrates the first test case in sample input. Node 1 and Node 3 form the minimal ratio tree.

Output

For each test case output one line contains a sequence of the m nodes which constructs the minimal ratio tree. Nodes should be arranged in ascending order. If there are several such sequences, pick the one which has the smallest node
number; if there‘s a tie, look at the second smallest node number, etc. Please note that the nodes are numbered from 1 .

Sample Input

3 2
30 20 10
0 6 2
6 0 3
2 3 0
2 2
1 1
0 2
2 0
0 0

Sample Output

1 3
1 2

转载请申明: http://blog.csdn.net/lionel_d

写代码的时候,,总是犯SB的错误!!!导致wrong了好长时间!!一直以为是精度错了,,o(╯□╰)o

先枚举m个 点,,再求这m个点的最小生成树,,就可以了,,一开始我是先求n个点的最小生成树,再从树上枚举m个点,,,结果老是wrong,后来看别人的题解,,才明白自己的思路错了很严重啊!!!

看代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAX 20
#define INF 100000000

using namespace std ;

int graph[MAX][MAX] , lowCost[MAX] , node[MAX] , path[MAX] , temp[MAX];
int n ,m ;

bool cmp(const int a , const int b)
{
	return a<b ;
}
int prim(int s)
{
	bool visited[MAX] ;
	memset(visited,false,sizeof(visited)) ;
	int sum = 0 ;
	for(int i = 0 ; i < m ; ++i)
	{
		lowCost[temp[i]] = graph[s][temp[i]] ;
	}
	visited[s] = true ;
	for(int i = 0 ; i < m-1 ; ++i)
	{
		int min = INF , index = -1 ;
		for(int j = 0 ; j < m ; ++j)
		{
			if(!visited[temp[j]] && lowCost[temp[j]]<min)
			{
				min = lowCost[temp[j]] ;
				index = temp[j] ;
			}
		}
		if(index == -1)
		{
			break ;
		}
		visited[index] = true ;
		sum += min ;
		for(int j = 0 ; j < m ; ++j)
		{
			if(!visited[temp[j]] && lowCost[temp[j]]>graph[index][temp[j]])
			{
				lowCost[temp[j]] = graph[index][temp[j]] ;
			}
		}
	}
	return sum ;
}
double ans = INF*1.0 ;
void DFS(int num , int count)
{
	if(count == m)
	{
		int sumOfEdge = prim(temp[0]) ,sumOfNode = 0;
		for(int i = 0 ; i < m ; ++i)
		{
			sumOfNode += node[temp[i]] ;
		}
		double t = sumOfEdge*1.0/sumOfNode ;
		if(ans-t>0.00001)
		{
			ans = t ;
			for(int i = 0 ; i < m ; ++i)
			{
				path[i] = temp[i] ;
			}
		}
		return ;
	}
	for(int i = num+1 ; i <= n ; ++i)
	{
		temp[count] = i ;
		DFS(i,count+1);
	}
}

int main()
{
	while(~scanf("%d%d",&n,&m) && (m||n))
	{
		for(int i = 1 ; i <= n ; ++i)
		{
			scanf("%d",&node[i]) ;
		}
		for(int i = 1 ;i <= n ; ++i )
		{
			for(int j = 1 ; j <= n ; ++j)
			{
				scanf("%d",&graph[i][j]) ;
			}
			graph[i][i] = INF ;
		}
		ans = INF*1.0 ;
		for(int i = 1 ; i <= n ; ++i)
		{
			temp[0] = i ;
			DFS(i,1);
		}
		sort(path,path+m,cmp) ;
		for(int i = 0 ; i < m ; ++i)
		{
			printf("%d",path[i]) ;
			if(i != m-1)
			{
				printf(" ") ;
			}
		}
		puts("") ;
	}
	return 0 ;
}

与君共勉

时间: 2024-10-25 05:49:48

hdu 2489 Minimal Ratio Tree DFS枚举点+最小生成树 属于中等偏上题 ,Double比较大小的时候注意精度问题的相关文章

hdu 2489 Minimal Ratio Tree(dfs枚举 + 最小生成树)~~~

题目: 链接:点击打开链接 题意: 输入n个点,要求选m个点满足连接m个点的m-1条边权值和sum与点的权值和ans使得sum/ans最小,并输出所选的m个点,如果有多种情况就选第一个点最小的,如果第一个点也相同就选第二个点最小的........ 思路: 求一个图中的一颗子树,使得Sum(edge weight)/Sum(point weight)最小~ 数据量小,暴力枚举~~~~~dfs暴力枚举C(M,N)种情况. 枚举出这M个点之后,Sum(point weight)固定,进行prim或者K

HDU 2489 Minimal Ratio Tree (DFS枚举+最小生成树Prim)

Problem Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation. Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a tree, which is a su

hdu 2489 Minimal Ratio Tree (DFS枚举+MST)

参考链接:http://blog.csdn.net/xingyeyongheng/article/details/9373271 http://www.cnblogs.com/chenxiwenruo/p/3294668.html 1 #include<iostream> 2 #include<cstdio> 3 #include<cstdlib> 4 #include<cstring> 5 #include<string> 6 #include

HDU 2489 Minimal Ratio Tree (dfs+Prim最小生成树)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2489 Problem Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation. Given a complete graph of n nodes with all nodes and edges

hdu - 2489 - Minimal Ratio Tree(枚举 + MST)

题意:给出一个图 n x n (2<=n<=15)的图,每个点,每条边都有权值,求其中的 m (2<=m<=n)个点,使得这m个点生成的树的边点权比例最小. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2489 -->>数量小,于是,可以枚举取 m 个点的所有情况,对每种情况最一次MST,更新最小值.. 时间复杂度:O(n ^ n * log(n) * 2 ^ n) #include <cstdio> #in

hdu 2489 Minimal Ratio Tree 枚举+最小生成树

点的总数很小,直接枚举就好. #include <stdio.h> #include <string.h> #define N 20 #define inf 1000000 int mk[N],n,k,ans[N]; double low[N],val[N]; double map[N][N],MIN; double prim() { int i,j; double sum=0; double tot=0; for(i=1;i<=n;i++) low[i]=inf; int

HDU 2489 Minimal Ratio Tree(数据结构-最小生成树)

Minimal Ratio Tree Problem Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation. Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a

HDU 2489 Minimal Ratio Tree(prim+DFS)

Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3345    Accepted Submission(s): 1019 Problem Description For a tree, which nodes and edges are all weighted, the ratio of it i

HDU 2489 Minimal Ratio Tree

Minimal Ratio Tree Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 248964-bit integer IO format: %I64d      Java class name: Maina For a tree, which nodes and edges are all weighted, the ratio of it is calcul