在家都变的懒惰了,好久没写题解了,补补CF
模拟 A - Wet Shark and Odd and Even
#include <bits/stdc++.h> typedef long long ll; const int N = 1e5 + 5; const int INF = 0x3f3f3f3f; int main(void) { std::vector<int> vec; int n; scanf ("%d", &n); ll sum = 0; for (int x, i=1; i<=n; ++i) { scanf ("%d", &x); sum += x; if (x & 1) vec.push_back (x); } std::sort (vec.begin (), vec.end ()); int sz = vec.size (); if (sz > 0 && (sz & 1)) sum -= vec[0]; printf ("%I64d\n", sum); return 0; }
开始想错了,当成斜率相等的。还好1000范围不大,统计矩阵每条对角线上的个数加点小优化就过了,代码丑。。。
#include <bits/stdc++.h> typedef long long ll; const int N = 2e5 + 5; bool vis[2][1005][1005]; int b[1005][1005]; std::pair<int, int> a[N]; ll cal(int x) { return 1ll * x * (x - 1) / 2; } int get_num1(int x, int y) { int xx = x, yy = y; int ret = 0; while (xx >= 1 && yy >= 1) { if (b[xx][yy]) ret++, vis[1][xx][yy] = true; xx--; yy--; } xx = x + 1, yy = y + 1; while (xx <= 1000 && yy <= 1000) { if (b[xx][yy]) ret++, vis[1][xx][yy] = true; xx++; yy++; } return ret; } int get_num0(int x, int y) { int xx = x, yy = y; int ret = 0; while (xx <= 1000 && yy >= 1) { if (b[xx][yy]) ret++, vis[0][xx][yy] = true; xx++; yy--; } xx = x - 1, yy = y + 1; while (xx >= 1 && yy <= 1000) { if (b[xx][yy]) ret++, vis[0][xx][yy] = true; xx--; yy++; } return ret; } int main(void) { int n; scanf ("%d", &n); for (int i=0; i<n; ++i) { scanf ("%d%d", &a[i].first, &a[i].second); b[a[i].first][a[i].second] = 1; } ll ans = 0; for (int i=0; i<n; ++i) { int x = a[i].first, y = a[i].second; if (!vis[0][x][y]) { ans += cal (get_num0 (x, y)); vis[0][x][y] = true; } if (!vis[1][x][y]) { ans += cal (get_num1 (x, y)); vis[1][x][y] = true; } } printf ("%I64d\n", ans); return 0; }
E = sum (1000 * 乘积是p的倍数的概率)
#include <bits/stdc++.h> typedef long long ll; const int N = 1e5 + 5; const int EPS = 1e-8; int l[N], r[N]; double pos[N]; int main(void) { int n, p; scanf ("%d%d", &n, &p); for (int i=1; i<=n; ++i) { scanf ("%d%d", &l[i], &r[i]); pos[i] = 1.0 * (r[i] / p - ((l[i]-1) / p)) / (r[i] - l[i] + 1); } l[0] = l[n], r[0] = r[n], pos[0] = pos[n]; double ans = 0; for (int i=0; i<=n; ++i) { if (i < n) ans += pos[i] * 1.0 + (1.0 - pos[i]) * pos[i+1]; if (i > 0) ans += pos[i] * 1.0 + (1.0 - pos[i]) * pos[i-1]; } ans *= 1000; printf ("%.8f\n", ans); return 0; }
数学(浮点) D - Rat Kwesh and Cheese
都取log,用long double,精度逆天!powl (): pow的long double版
#include <bits/stdc++.h> std::string ans[12] = { "x^y^z", "x^z^y", "(x^y)^z", "(x^z)^y", "y^x^z", "y^z^x", "(y^x)^z", "(y^z)^x", "z^x^y", "z^y^x", "(z^x)^y", "(z^y)^x" }; typedef long double ldouble; const double EPS = 1e-10; ldouble best; int id; bool better(ldouble val) { if (fabs (val - best) < EPS) return false; else if (best < val) { best = val; return true; } return false; } void try2(ldouble x, ldouble y, ldouble z, int pos) { //(x ^ y) ^ z ldouble val = z * y * log (x); if (better (val)) id = pos; } void try1(ldouble x, ldouble y, ldouble z, int pos) { //x ^ y ^ z ldouble val = powl (y, z) * log (x); if (better (val)) id = pos; } int main(void) { ldouble x, y, z; std::cin >> x >> y >> z; best = -1e12; id = -1; try1 (x, y, z, 0); try1 (x, z, y, 1); try2 (x, y, z, 2); try2 (x, z, y, 3); try1 (y, x, z, 4); try1 (y, z, x, 5); try2 (y, x, z, 6); try2 (y, z, x, 7); try1 (z, x, y, 8); try1 (z, y, x, 9); try2 (z, x, y, 10); try2 (z, y, x, 11); std::cout << ans[id] << ‘\n‘; return 0; }
时间: 2024-12-20 21:14:22