uva 10069 Distinct Subsequences (dp + 大数)

uva 10069 Distinct Subsequences

题目大意:给出两个字符串A和B,找出A中所有与B相同的子字符串。

解题思路:if(A[j?1]==B[i?1]){

dp[i][j]=dp[i][j]+dp[i?1][j?1];

}

import java.math.BigInteger;
import java.util.Scanner;

/**
 * Created by spzn on 15-3-30.
 */
public class Main {
    public static void main(String args[]) {
        Scanner cin = new Scanner(System.in);
        BigInteger dp[][] = new BigInteger[105][10005];
        int T, n, m;
        String a, b;
        T = cin.nextInt();
        while (T-- > 0) {
            a = cin.next();
            b = cin.next();
            n = a.length();
            m = b.length();
            for (int i = 0; i <= n; i++) {
               dp[0][i] = BigInteger.ONE;
            }
            for (int i = 1; i <= m; i++) {
                dp[i][0] = BigInteger.ZERO;
                for (int j = 1; j <= n; j++) {
                    dp[i][j] = dp[i][j - 1];
                    if (a.charAt(j - 1) == b.charAt(i - 1)) {
                       dp[i][j] = dp[i][j].add(dp[i - 1][j - 1]);
                    }
                }
            }
            System.out.println(dp[m][n]);
        }
    }
}
时间: 2024-11-03 22:46:36

uva 10069 Distinct Subsequences (dp + 大数)的相关文章

UVA 10069 ---Distinct Subsequences +DP+大数

可以定义dp[i][j]表示第一个串的前i个字符中含有第二个串的前j个字符的总情况数: 则:如dp[i][j]=dp[i-1][j],如果str1[i]==str2[j]则dp[i][j]+=dp[i-1][j-1]; 初始时讲所有的dp[i][0]赋值为1,其他为0. 然后这个题目需要用到大数,可以用C++重载运算符,或者是java的大数类: 我用的是java,第一次用java的大数,感觉还不错 :) 代码如下: import java.util.*; import java.math.*;

UVa 10069 Distinct Subsequences(大数 DP)

?? 题意 求母串中子串出现的次数(长度不超过1后面100个0  显然要用大数了) 令a为子串 b为母串 d[i][j]表示子串前i个字母在母串前j个字母中出现的次数   当a[i]==b[j]&&d[i-1][j-1]!=0时 d[i][j]=d[i-1][j-1]+d[i][j-1] (a[i]==b[j]时 子串前i个字母在母串前j个字母中出现的次数 等于 子串前i-1个字母在母串前j-1个字母中出现的次数 加上 子串前i个字母在母串前j-1个字母中出现的次数 a[i]!=b[j]时

uva 10069 Distinct Subsequences 【dp+大数】

题目:uva 10069 Distinct Subsequences 题意:给出一个子串 x 和母串 s ,求子串在母串中的不同序列的个数? 分析:定义dp[i][j]:x 的前 i 个字母在 s 的前 j 个字母中的出现次数: dp [ i ] [ j ] = dp [ i ] [ j - 1 ] ; if ( x[ i ] == s [ j ] ) dp[i][j]=add(dp[i-1][j-1],dp[i][j]); 注意点:1:出现次数非常大,要用大数加法 2::注意初始化 AC代码:

UVA 10069 Distinct Subsequences(DP)

考虑两个字符串,我们用dp[i][j]表示字串第到i个和字符串到第j个的总数,因为字串必须连续 因此dp[i][j]可以有dp[i][j-1]和dp[i-1][j-1]递推而来,而不能由dp[i-1][j]递推而来.而后者的条件 是字串的第i个和字符串相等. A subsequence of a given sequence is just the given sequence with some elements (possibly none) left out. Formally, give

Distinct Subsequences (dp)

Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative

uva10069 - Distinct Subsequences(大数+DP)

题目:uva10069 - Distinct Subsequences(大数+DP) 题目大意:给出字符串A , B.问能够在A中找到多少子串B,可以不连续. 解题思路:dp[i][j] 代表从i位开始的B串在从j位开始的A串中能够找到多少种. B[i] == A[j] dp[i][j] = dp[i - 1][j - 1] + dp[i][j - 1]: B[i] != A[j] dp[i][j] = dp[i][j - 1]:边界要处理一下.就是B中只有最后的那个字符来和A匹配的情况要处理一

Leetcode dp Distinct Subsequences

Distinct Subsequences Total Accepted: 15484 Total Submissions: 62324My Submissions Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from the original strin

115. Distinct Subsequences (String; DP)

Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative

[LeetCode] Distinct Subsequences(DP)

Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative