排序算法(二)--选择排序

选择排序

选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n2) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。

1. 算法步骤

  1. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
  2. 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  3. 重复第二步,直到所有元素均排序完毕。

2. 动图演示

3. C++代码实现

/*
    选择排序,升序排列
    O(N^2)时间复杂度,O(1)空间复杂度
*/
vector<int> AlgorithmSort::selectionSort(vector<int> vec)
{
    int len = vec.size();
    //边界值判定
    if (len <= 1)
        return vec;

    //原始写法
    //for (int i = 0; i < len; i++)
    //{
    //  for (int j = i+1; j < len; j++)
    //  {
    //      if (vec[i] > vec[j])
    //          swap(vec[i], vec[j]);
    //  }
    //} 

    //优化写法
    for (int i = 0; i < len-1; i++)
    {
        // 取最小元素
        vector<int>::iterator it = min_element(vec.begin() + i + 1, vec.end());
        if(vec[i]>*it)
            swap(vec[i], vec[it-vec.begin()]);
    }
    return vec;
}

4. JavaScript 代码实现

function selectionSort(arr) {
    var len = arr.length;
    var minIndex, temp;
    for (var i = 0; i < len - 1; i++) {
        minIndex = i;
        for (var j = i + 1; j < len; j++) {
            if (arr[j] < arr[minIndex]) {     // 寻找最小的数
                minIndex = j;                 // 将最小数的索引保存
            }
        }
        temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
    }
    return arr;
}

5. Python 代码实现

def selectionSort(arr):
    for i in range(len(arr) - 1):
        # 记录最小数的索引
        minIndex = i
        for j in range(i + 1, len(arr)):
            if arr[j] < arr[minIndex]:
                minIndex = j
        # i 不是最小数时,将 i 和最小数进行交换
        if i != minIndex:
            arr[i], arr[minIndex] = arr[minIndex], arr[i]
    return arr

6. Go 代码实现

func selectionSort(arr []int) []int {
    length := len(arr)
    for i := 0; i < length-1; i++ {
        min := i
        for j := i + 1; j < length; j++ {
            if arr[min] > arr[j] {
                min = j
            }
        }
        arr[i], arr[min] = arr[min], arr[i]
    }
    return arr
}

7. Java 代码实现

public class SelectionSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        // 总共要经过 N-1 轮比较
        for (int i = 0; i < arr.length - 1; i++) {
            int min = i;

            // 每轮需要比较的次数 N-i
            for (int j = i + 1; j < arr.length; j++) {
                if (arr[j] < arr[min]) {
                    // 记录目前能找到的最小值元素的下标
                    min = j;
                }
            }

            // 将找到的最小值和i位置所在的值进行交换
            if (i != min) {
                int tmp = arr[i];
                arr[i] = arr[min];
                arr[min] = tmp;
            }

        }
        return arr;
    }
}

8. PHP 代码实现

function selectionSort($arr)
{
    $len = count($arr);
    for ($i = 0; $i < $len - 1; $i++) {
        $minIndex = $i;
        for ($j = $i + 1; $j < $len; $j++) {
            if ($arr[$j] < $arr[$minIndex]) {
                $minIndex = $j;
            }
        }
        $temp = $arr[$i];
        $arr[$i] = $arr[$minIndex];
        $arr[$minIndex] = $temp;
    }
    return $arr;
}

原文地址:https://www.cnblogs.com/sylucky/p/selectionSort.html

时间: 2024-10-31 13:20:47

排序算法(二)--选择排序的相关文章

[排序算法二]选择排序

选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理是:第一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小(大)元素,然后放到已排序的序列的末尾.以此类推,直到全部待排序的数据元素的个数为零.选择排序是不稳定的排序方法. 算法性能 时间复杂度:O(n^2),总循环次数 n(n-1)/2.数据交换次数 O(n),这点上来说比冒泡排序要好,因为冒泡是把数据一位一位的移上来,而选择排序只需要在子循环结束后移动一次

排序算法(二)选择排序---堆排序

概念:利用树结构进行排序. 分类:1.大顶堆: 每个小树的根节点都大于子节点   升序排序使用大顶堆 2.小顶堆:每个小树的子节点都大于根节点 降序排序使用小顶堆 1 public class HeapSort { 2 3 public static void main(String[] args){ 4 int[] arr=new int[]{9,6,7,0,1,10,4,2}; 5 System.out.println(Arrays.toString(arr)); 6 heapSort(ar

排序算法之选择排序

一. 算法描述 选择排序:在一个长度为N的无序数组中,在第一趟遍历N个数据,找出其中最小的数值与第一个元素交换,第二趟遍历剩下的N-1个数据,找出其中最小的数值与第二个元素交换......第N-1趟遍历剩下的2个数据,找出其中最小的数值与第N-1个元素交换,至此选择排序完成. 二. 算法分析 平均时间复杂度:O(n2) 空间复杂度:O(1)  (用于交换和记录索引) 稳定性:不稳定 (比如序列[5, 5, 3]第一趟就将第一个[5]与[3]交换,导致第一个5挪动到第二个5后面) 三. 算法实现

数据结构排序算法之选择排序

今天继续介绍一种排序算法:选择排序. 选择排序的基本思想就是从待排序列中选择出最小的,然后将被选出元素和序列的第一个元素互换位置(当前默认是升序排列),则互换完成后第一个元素就是整个序列的最小的元素,则一次选择排序结束.然后我们从剩下的子序列中选择出最小的,然后将该被选出来的元素和该子序列的第一个元素(即整个序列的第二个元素)互换位置,则当前整个序列的第二个元素就是当前序列中的次最小值,第二次选择排序结束.以此类推,直到该待排序列只剩下一个元素后,则整个序列有序. 具体过程如下图所示: 下面就不

【排序算法】选择排序(Selection sort)

0. 说明 选择排序(Selection sort)是一种简单直观的排序算法. 它的工作原理如下. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾.以此类推,直到所有元素均排序完毕. 选择排序的主要优点与数据移动有关.如果某个元素位于正确的最终位置上,则它不会被移动.选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对 n 个元素的表进行排序总共进行至多 n-1 次交换.在所有的完全依

初级排序算法之选择排序

初级排序算法 本质是对要排序的数组进行嵌套循环,内层循环负责局部的排序,外层循环负责剩余的无序元素的递减.所以你只要理解嵌套循环和比较大小就能很快的掌握初级排序算法. 选择排序 一个无序的数组 a = [0, 4, 6, 3, 8, 2, 3, 9], 你也可以把a的元素想象成任何现实中可比较的具体物体.例如,有10根长短不一的木条,我们如何对它们进行排序?一个最直接的思想,先拿出最短的放到最前面,在剩余的木条中再拿出最短的放在第二位...直到最后一根木条.从中我们可以看出,1. 我们需要再一次

【排序算法】选择排序

选择排序算法原理 选择排序算法时间复杂度分析 选择排序算法稳定性分析 选择排序算法C语言代码 #include <stdio.h> //交换两个元素的值 void swap(int* a, int* b) { int temp; temp = *a; *a = *b; *b = temp; } void selectionSort(int arr[], int length) { int i, j, maxIndex; for(i = length; i > 0; i--) { //假设

算法学习之排序算法:选择排序

选择排序:每一趟在n-i+1(i=1,2,...,n-1)个记录中选取关键字最小的记录作为有序序列中第i个记录. 一.简单选择排序 一趟选择排序操作: 通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之. 对L[1...n]中记录进行简单选择排序的算法为:令i从1至n-1,进行n-1趟选择操作.简单选择排序过程中,所需进行记录移动的操作次数较少,然而,无论记录的初始排列如何,所需关键字间的比较次数相同.因此,总的时间复杂度为O(n^2)

选择排序算法---直接选择排序和堆排序

本文主要是解析选择排序算法:直接选择排序和堆排序. 一.直接选择排序   基本思想:       选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理如下.首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾.以此类推,直到所有元素均排序完毕. 选择排序的主要优点与数据移动有关.如果某个元素位于正确的最终位置上,则它不会被移动.选择排序每次交换一对元素,它们当中至少有一个将被移到其最终

经典排序算法--简单选择排序

算法简介 简单选择排序是一种选择排序. 选择排序:每趟从待排序的记录中选出关键字最小的记录,顺序放在已排序的记录序列末尾,直到全部排序结束为止. 白话理解 依然已排队为例,在排队时,有的老师可能会选择这样排序,先在一列中选出最矮的,放在第一位,然后选出第二矮的,放在第二位.队伍完成排序.而这就是选择排序的思想. 简单排序处理流程 (1)从待排序序列中,找到关键字最小的元素: (2)如果最小元素不是待排序序列的第一个元素,将其和第一个元素互换: (3)从余下的 N - 1 个元素中,找出关键字最小