python多进程multiprocessing模块中Queue的妙用

  最近的部门RPA项目中,小爬为了提升爬虫性能,使用了Python中的多进程(multiprocessing)技术,里面需要用到进程锁Lock,用到进程池Pool,同时利用map方法一次构造多个process。Multiprocessing的使用确实能显著提升爬虫速度,不过程序交由用户使用时,缺乏一个好的GUI窗口来显示爬虫进度。之前的文章中使用了Chrome浏览器来渲染js脚本生成了进度条。但是鉴于Chrome在运行时十分吃内存资源,用Chrome只是生成一个进度条难免有些“大材小用”,所以,小爬决定使用Tkinter库来制作进度条,进而摆脱对chrome浏览器的依赖。

  要制作进度条,就得有计数器存储爬虫的总数,当前的爬取数甚至是当前的耗费时间等作为存储变量。考虑到各个进程之间无法直接通信,这个当前量和总量如何得到,就只能借助multiprocessing中的Queue类了。根据官方文档,multiprocessing中的Queue 类几乎完美克隆了Queue.Queue中的功能,但是它是专为多进程间的通信单独设计的。

透过一个简单的例子看下Queue是如何运用的:

from multiprocessing import Process, Queue

def f(q):
    q.put([42, None, ‘hello‘])

if __name__ == ‘__main__‘:
    q = Queue()
    p = Process(target=f, args=(q,))
    p.start()
    print q.get()    # prints "[42, None, ‘hello‘]"
    p.join()

从上面的例子可以看到,此处的Queue示例出的q对象非常灵活,使用Ipython的代码提示功能可以轻松知道q对象含以下方法,供用户调用:

比如:

1、它主要是通过q.put()来入列,该方法支持存入单个变量,也支持通过列表一次入列多个不同类型的元素,异常灵活多变。

2、q.qsize()可以得到当前队列的元素总数。

3、q.empty()可以判断当前队列中是否还有值,返回一个布尔型的结果。如:

In [36]: q.empty()
Out[36]: True

4、通过q.get()方法来出队列。

这样我们就可以灵活使用队列来在各进程间通信和制作进度条了。

我们在爬虫中,往往会遇到一个这样的情况,目录页和详情页的信息需要结合到一个item中存储起来,它就可以巧妙借助Queue来实现。

上面的例子中,我一次存入了url,bpmDefName,dataId,afFormNumber 等多个字段信息。

后面我们再从queue中取出一个结果,则该结果是包含 url,bpmDefName,dataId,afFormNumber 多个信息的元组。进而得到元组的每个元素与详情页的相关字段拼接到一起,形成一行信息。代码示例如下:

最后通过Q.qsize()方法判断队列中的元素是否已完全取出,来实时计算爬虫进度和决定后续动作,非常方便!

有了multiprocessing模块的Queue类和它提供的诸多方法,制作进度条和关联多个item信息,便不再是难题!

原文地址:https://www.cnblogs.com/new-june/p/10783177.html

时间: 2024-10-17 12:06:23

python多进程multiprocessing模块中Queue的妙用的相关文章

python 多进程multiprocessing 模块

multiprocessing 常用方法: cpu_count():统计cpu核数 multiprocessing.cpu_count() active_children() 获取所有子进程 multiprocessing.active_children() preces() 创建一个进程对象 multiprocessing.Preces(target=function_name, args=()) target: 函数名 args: 函数需要的参数,以tuple形式传入,一个参数时需(1,)

Python多进程multiprocessing使用示例

mutilprocess简介 像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多. import multiprocessing def worker(num): """thread worker function""" print 'Worker:', num return if __name__ == '__main__': jobs = [] for i

Python多进程multiprocessing(二)

紧接上文 在上文Python多进程multiprocessing(一)中我们介绍了多进程multiprocessing的部分基础操作,在本文中,我们将继续介绍关于多进程的一些知识,比如进程池Pool这个有用的东东.马上开始吧! 使用实例 实例1 import multiprocessing as mp def job(x): return x*x def multicore(): pool = mp.Pool(processes=2) res = pool.map(job,range(10))

简介Python的collections模块中defaultdict类型

这里我们来简介Python的collections模块中defaultdict类型的用法,与内置的字典类最大的不同在于初始化上,一起来看一下: defaultdict 主要用来需要对 value 做初始化的情形.对于字典来说,key 必须是 hashable,immutable,unique 的数据,而 value 可以是任意的数据类型.如果 value 是 list,dict 等数据类型,在使用之前必须初始化为空,有些情况需要把 value 初始化为特殊值,比如 0 或者 ''. from c

Python的collections模块中namedtuple结构使用示例

namedtuple顾名思义,就是名字+元组的数据结构,下面就来看一下Python的collections模块中namedtuple结构使用示例 namedtuple 就是命名的 tuple,比较像 C 语言中 struct.一般情况下的 tuple 是 (item1, item2, item3,...),所有的 item 都只能按照 index 访问,没有明确的称呼,而 namedtuple 就是事先把这些 item 命名,以后可以方便访问. ? 1 2 3 4 5 6 7 8 9 10 11

python 3 编程之多进程 multiprocessing模块

一 .multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.Python提供了multiprocessing. multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似. multiprocessing模块的功能众多:支持子进程.通信和共享数据.执行不同形式的同步,提供了

python多进程-----multiprocessing包

multiprocessing并非是python的一个模块,而是python中多进程管理的一个包,在学习的时候可以与threading这个模块作类比,正如我们在上一篇转载的文章中所提,python的多线程并不能做到真正的并行处理,只能完成相对的并发处理,那么我们需要的就是python的多进程来完成并行处理,把所有的cpu资源都利用起来.multiprocessing的很大一部分与threading使用同一套API,只不过换到了多进程的环境.这里面要注意,对于多进程来说,win32平台和unix平

python ---多进程 Multiprocessing

和 threading 的比较 多进程 Multiprocessing 和多线程 threading 类似, 他们都是在 python 中用来并行运算的. 不过既然有了 threading, 为什么 Python 还要出一个 multiprocessing 呢? 原因很简单, 就是用来弥补 threading 的一些劣势, 比如在 threading 教程中提到的GIL. 创建多进程 import multiprocessing as mp import threading as td def

多进程multiprocessing模块

multiprocessing是python的多进程管理包,和threading.Thread类似.直接从侧面用subprocesses替换线程使用GIL的方式,由于这一点,multiprocessing模块可以让程序员在给定的机器上充分的利用CPU. 在multiprocessing中,通过创建Process对象生成进程,然后调用它的start()方法 1 from multiprocessing import Process 2 3 def f(name): 4 print('hello',