初级模拟电路:1-2 PN结与二极管

1.   掺杂半导体

上面我们分析了本征半导体的导电情况,但由于本征半导体的导电能力很低,没什么太大用处。所以,一般我们会对本征半导体材料进行掺杂,即使只添加了千分之一的杂质,也足以改变半导体材料的导电特性。通过加入不同特性的掺杂的元素,可以做出两种不同性质的半导体材料:n型半导体材料和 p型半导体材料,下面分别予以介绍。

(1) n型半导体

n型半导体材料是通过对本征半导体掺入有5个价电子的元素得到的,常见的5价元素有:锑(Sb)、砷(As)、磷(P),下面以锑作为掺杂元素、硅作为本征基片来举例,见下图所示:

图 1-2.01

在图中我们可以看到,锑的5个价电子中,有4个分别和旁边的硅原子形成了共价键,受到硅原子和锑原子的双重束缚。但是还剩余一个电子没有形成共价键,这个剩余电子本来就处于锑原子的导带和价带之间的重叠地带,所以受锑原子的束缚非常弱,可以在n材料中成为自由电子。这相当于锑原子贡献了一个自由电子,因此这种5价的掺杂原子称为:施主原子(donor atom)。

虽然n型材料中有大量的自由电子,但是n材料中也还是有空穴的,这些空穴由原来的本征硅材料产生,虽然数量非常小,但也不是没有。我们把n材料中的自由电子称为多数载流子(majority carriers),简称多子;而把n型材料中的空穴称为少数载流子(minority carriers),简称少子

“n”的含义是指,其多数载流子为带负电荷(negtive)的自由电子。需要强调的是,虽然称为n型材料,但材料本身还是中性的,其总正电荷与总负电荷数量相等。

(2) p型半导体

p型半导体材料是通过对本征半导体掺入有3个价电子的元素得到的,常见的3价元素有:铝(Al)、硼(B)、镓(Ga),下面以硼作为硅基片的掺杂元素举例,见下图所示:

图 1-2.02

在图中我们可以看到,由于硼只有3个价电子,导致它和周围的共价键网格中,还缺少1个电子,因此留下一个空穴,这个空位可以方便地接受一个自由电子。这种3价的掺杂原子称为:受主原子(acceptor atom)。

同样的,p型材料中虽然有大量的空穴,但也还是有少量的自由电子的,这些自由电子由原来的本征硅材料产生。所以在p型材料中的多数载流子为空穴,而少数载流子为自由电子。

“p”的含义是指,其多数载流子为带正电荷(positive)的空穴。仍然需要强调的是,虽然称为p型材料,但材料本身还是中性的,其总正电荷与总负电荷数量相等。

2.   PN结

在一块本征硅材料上掺杂,让其一半形成n型材料,另一半型成p型材料,则在交界处会形成一个称为PN结(p-n junction)的结构。这就是一个基本的二极管(diode)。二极管的符号见下图:

图 1-2.03

其中,阳极(Anode)和阴极(Kathode)这两个名词是从更古老的电子管时代遗留下来的(是的,电子管时代就有二极管了),对于现代的晶体管结构二极管,似乎叫P级和N级更合适一些,不过既然已经约定俗称这么叫了,就这么叫吧。

(1) 耗尽层

在p区和n区的交界面附近,处于n区的导带的自由电子,由于热扩散的作用,会有一部分进入到p区,由于p区存在大量的空穴,这些扩散过来的自由电子会很容易与p区的空穴复合。由此产生两个影响:

① 在n区,由于5价的掺杂原子失去了一个电子,因此变成了一个带正电的离子;② 在p区,由于3价的掺杂原子捕获了电子,因此变成了一个带负电的离子,如下图所示(固体中的离子是不能动的,所以图中画成了方形):

图 1-2.04

同样的,处于p区的空穴,由于热扩散的作用,也会有一部分进入到n区,并且与n区的自由电子结合(这里再次声明一下,空穴移动的本质,是价带电子在空穴间移动造成的,但我们将空穴看成为一种带“正电荷”的移动粒子,分析起来会比较方便)。

空穴从p区扩散到n区,同样会产生两个影响:在p区的3价掺杂原子失去一个空穴(失去一个空穴可以理解为失去一个“正电荷”),而变为一个带负电的离子;在n区的某原子获得一个空穴(n区的5价原子和硅原子都可以获得空穴),而变为一个带正电的离子。

可以看到,无论是自由电子的扩散还是空穴的扩散,都会使p区的负离子越来越多,而n区的正离子越来越多。

当这些离子越积越多后,会在pn结附近形成一个内建电场E,如下图所示:

图 1-2.05

而这个内建电场会产生一种阻力,阻碍上面的扩散运动,也阻碍电场自身继续变得更强,这个分析稍微有点复杂。有8种情况要讨论,我们这里仅分析n区的4种情况(p区的4种情况类似,只是方向相反)。

(1) n区电场外部的自由电子,会由于扩散作用而进入电场,当它们一旦进入这个电场,都要受到一个反方向的电场力,使得它们弹回去,不再能轻易到达对面的p区,这个效果阻碍n区的自由电子扩散到p区。(但也不是没有,只有那些动能极高的自由电子,才能穿过电场,到达对面的p区,只不过数量极少)。

(2) n区电场内部的自由电子,其中的大多数自由电子已扩散到p区,并与p区的空穴复合形成了负离子。一旦与p区的空穴结合后,就回不来了,所以在电场内部的n区基本没有自由电子

(3) n区电场外部的空穴(硅材料原生的,很少),一旦进入这个电场,会受到电场力的作用,加速进入p区,接着与p区的负离子复合,削减电场强度。

(4) n区电场内部的空穴(主要是p区扩散过来的),过来的空穴基本上都已经与n区的自由电子结合,形成了正离子。所以在电场内部的n区也没有空穴

(5)~(8) p区的情况也是类似,读者可自行推演。

其实,即便你不想烧脑去搞清楚上面(1)~(8)的情况也没关系,只要记住下面2个结论就行了:

● 在pn结的内建电场区域中,既没有自由电子,也没有空穴,所以这个区域称为耗尽层(depletion region)。

● 自由电子和空穴的扩散运动使内建电场增强,而这个内建电场反过来会阻碍扩散运动的继续进行(同时也阻碍电场自己变得更强)。最后两者会达到一个平衡状态,在耗尽层形成一个平衡的电场,进而产生内建电势差,这个电势差也被称为势垒电压(barrier voltage)。在室温下,一般硅基材料的势垒电压大约为0.7V,锗基为0.3V。

(2) PN结反偏

如果把一个外部电压源加到PN结上,使电源正极连接n型材料,电源负极连接p型材料,如下图所示,这种接法称为反向偏置(reverse-bias)。

图 1-2.06

分析时,电源的正极和负极可以看成这样一种抽象:电源正极有吸引电子和排斥空穴的趋势,并可以无限量接收电子和提供空穴;电源负极有吸引空穴和排斥电子的趋势,并可以无限量接收空穴和提供电子。

先来分析多数载流子的情况,电源正极吸引n区中的自由电子,从而使得n区产生更多的正离子;而电源负极吸引p区中的空穴,从而使得p区产生更多的负离子;进而使得耗尽层的内建电场和势垒电压变得更大,如下图所示:

图 1-2.07

直到最后内部的势垒电压等于外加的反偏电压,此时,电源正极无法再从n区吸收到自由电子,而电源负极也无法再从p区吸收到空穴,两者达到一种平衡。此时多子流减为0。

然后再考虑少数载流子的情况:在p区的耗尽层外部会有一些极少量的自由电子,它们被电源负极排斥而进入PN结内建电场,然后被内建电场加速而推到n区,最后穿过n区被电源正极吸收;而电源的负极会补给新的自由电子到p区,如此形成持续的少子电流。在n区的少子“空穴”的情况也是类似(在n区的少子空穴,被电源正极排斥而进入并且穿过内建电场,最后被电源负极吸收)。但是由于少子的总数非常小,因此这个少子电流非常微弱(一般在几个微安左右)。

这个在反偏电压下的电流称为反向饱和电流(reverse saturation current),用IS表示。饱和的意思是指:随着反偏电压的增大,反偏电流维持不变,不会持续增大。

(3) PN结正偏

当把外电源的正极接到二极管的p型材料,电源负极接到n型材料,这种接法称为正向偏置(forward-bias),如下图所示:

图 1-2.08

在正偏情况下,p区的空穴被电源正极推向耗尽层,从而与p区耗尽层的一部分负离子复合;同样的,n区的自由电子被电源负极推向耗尽层,从而与n区耗尽层的一部分正离子复合,这样就等于是削弱了耗尽层的内建电场和势垒电压。如下图所示:

图 1-2.09

随着外部电源正偏电压的增大,内建电场不断被削弱,直到外部电压可以克服内部势垒电场时,n区的电子和p区的空穴可有足够的能量进入对方区域,再而流到电源,这将导致电流极快增长,此时称二极管为导通状态,在图中表示为ID。这里有一个比较有趣的问题:自由电子进入p区后如何运动?回答是,自由电子进入p区后,会与价带的空穴复合,然后在价带中沿着空穴一路运动到电源负极。也就是说,在p区运动的多数载流子仍然是空穴。

至于正偏情况下的少子电流,在正偏电压很小时,会有非常微弱的少子电流。但由于少子的总数相当小,与多子电流相比,一般可忽略不记。

(4) 反向击穿

再回来讲反偏。虽然在反偏条件下,反向饱和电流不随反偏电压的增大而增大,但反偏电压也不能太大,当反偏电压过大时,会引起二极管的反向击穿(reverse breakdown)。有2种机制会引起反向击穿,分别是雪崩击穿(avalanche breakdown)和齐纳击穿(Zenor breakdown)。

先讲雪崩击穿。前面在讲反偏的时候讲过,少数载流子在经过耗尽层时,会被内建电场加速一下。当反偏电压越大时,内建电场的势垒电压也越大,给少子的加速也越大,当少子的动能足够大时,它会撞击破坏其他原子的共价键,进而撞击出一个新的“自由电子-空穴”对。这个新的“自由电子-空穴”对,同样会被内建电场加速,再去撞击其他的共价键,最后引起雪崩效应,导致反向电流急剧增大。雪崩击穿会造成二极管的永久损坏,这是必须避免的。生产商通过调节掺杂浓度来控制雪崩电压值,常用二极管的雪崩击穿电压一般在几十伏到几百伏不等。

另一种击穿机制是齐纳击穿。同样是在反偏条件下,在耗尽层的内建强电场会破坏其中原子的结合力,从而强行电离出“电子-空穴”对。一般齐纳电压值比雪崩电压值会低一些,但也不是一定的。对于普通二极管,无论是雪崩击穿还是齐纳击穿,都会造成二极管的永久损坏。所以一般二极管的规格书上不区分两者,统一称为峰值反向电压,简称PIV(peak inverse voltage),也有的厂商把它简写为PRV(peak reverse voltage),在一些教材上也把它写成VBR(break voltage),都是一个意思。

另外有一种特殊二极管称为齐纳二极管(Zener diode),也叫稳压二极管,它专门可以工作于齐纳击穿电压而不损坏。齐纳二极管是在电子电路中比较常用的一种元器件,通常用于保护线路不被意外的高电压击坏,这个后面我们会单独介绍。

好了,关于半导体与PN结内部的工作原理就解释到这里,以上的内容都只是为了帮助学习者快速理解的一种简化模型,其实半导体材料真正的内部工作机理非常复杂,如果你真的还想刨根问底,可以去看《固体物理》、《半导体器件基础》之类的书,说实话,再深了我也不懂 :)

回到目录

( end of 1-2 )



初级模拟电路:1-2 PN结与二极管

原文地址:https://www.cnblogs.com/initcircuit/p/10847634.html

时间: 2024-11-09 05:26:31

初级模拟电路:1-2 PN结与二极管的相关文章

初级模拟电路:目录

前言概述 一.  PN结与二极管 1-1 半导体材料 1. 原子模型 2. 能带模型 3. 载流子 1-2 PN结与二极管 1. 掺杂半导体 2. PN结 3. 二极管的偏置 1-3 二极管的伏安特性 1. 完整的二极管伏安特性曲线 2. 温度影响 3. 简化的二极管伏安特性曲线 1-4 二极管的电阻 1-5 二极管的其他特性 1-6 二极管数据规格表 1-7 特殊用途二极管 初级模拟电路:目录 原文地址:https://www.cnblogs.com/initcircuit/p/1080175

初级模拟电路:1-1 半导体材料

几乎所有的模电教材,第一章都会写PN结与二极管,但是能写到让人完全读懂的却不多.我当年学模电的时候,曾经卡在这里很长时间,一些概念貌似看明白了,但一深究就会觉得有些地方解释不通,解释不通的地方书本上又语焉不详.直到很多年后才知道,这个其实涉及到蛮复杂的半导体材料学和量子力学机制,如果不是专门做模拟IC设计,一般搞分立元件电路的人其实并不需要搞明白其中的详细原理与机制,只要知道其伏安曲线,再知道一些其他非线性特性,就可以设计电路了.所以,很多教科书都在这里稍微描述一下,也不指望读者去深入理解.我这

初级模拟电路:3-1 BJT概述

回到目录 1.   名称由来 BJT的全称是双极性结型晶体管(Bipolar Junction Transistor),国内俗称三极管.其实,在英语中,三极管(triode)特指以前的真空电子管形式的三极管,而不是我们现在普遍使用的半导体三极管.“tri-”的意思是“三”,“ode”的意思是“极”,当年的电子管一般都封装在一个圆柱形的真空玻璃管中,所以中文翻译在后面加了个“管”. 早在二战以前,电子技术和电子元器件的应用就已经很发达了,在1930年代,全球电子管的年产量就已经达到1亿支以上.在那

初级模拟电路:3-8 BJT数据规格书(直流部分)

回到目录 本小节我们以2N4123通用型BJT硅基晶体管为例,来介绍如何阅读BJT的数据规格书,点此链接可以阅读和下载2N4123的数据规格书. 1. 总体性能 打开datasheet后,首先看标题: 图3-8.01 可以看到,这是2N4123.2N4124共用的一个datasheet,而且是通用型NPN硅基三极管.然后在在第一页的右侧,厂家给出了管脚识别方法和管体上的文字标记含义: 图3-8.02 在第一页的主体篇幅,数据规格书列出了这个BJT晶体管的所有极限性能,好让使用者先对这个器件有一个

初级模拟电路:1-3 二极管的伏安特性

好了,前面的就算不懂也没关系,真正的模拟电路从这里开始.要使用二极管做电路设计,第一件事就是掌握二极管的伏安特性曲线. 1.   完整的二极管伏安特性曲线 图 1-3.01 二级管的完整伏安特性如上图所示(为表示方便,图中横坐标和纵坐标在正半轴和负半轴的尺度是不一样的),说明如下: (1) 在正偏时,当VD很小时,电流接几乎为0.当VD增大到一定阈值后(图中为0.7V左右),电流开始极快地以指数级增长(毫安级). (2) 在反偏时,反向饱和电流IS维持一个很小值(微安级),不随反偏电压变化.但是

初级模拟电路:概述

做嵌入式开发,以我个人的经验,虽然70%以上的时间都会花在软件上面(并且软件的比重将来还可能更多),但剩下那30%,无论如何也是要与硬件打交道的.那模拟电路和数字电路就是绕不过去的坎,总会碰上的. 很多嵌入式工程师比较怕模拟这一块,因为在学校里,虽然很多专业都会开模拟电路的课程,但我相信80%以上的人当年是没学明白的(包括我自己).后来由于工作中要用,不得不再回去啃书,而且买回来一堆古今中外的模电的书(噢,没有古),互相参照着看,才慢慢.慢慢.稍微.有点整明白了. 现在回过头再看当年学校里的模电

初级模拟电路:2-2 二极管实现逻辑门

回到目录 二极管可以实现简单的数字电路中的 与门(and gate)和 或门(or gate)逻辑.优点是电路简单,成本低:缺点是功耗比较大.事实上,我们一般不会真正用二极管去构造逻辑电路,因为这么简单的一个逻辑门功能,要消耗这么大功耗实在不划算.这里仅仅是作为一种概念电路,用来说明二极管也是可以实现门电路的,还有就是在万不得已情况下偶尔用一下. 1.   或门 根据TTL电平信号规定,对于输出信号,输出电平大于2.4V属于高电平,一般代表逻辑1:输出电平小于0.4V的属于低电平,一般代表逻辑0

初级模拟电路:3-6 共射放大电路-2(分压偏置的直流分析)

回到目录 (续上小节) 3. 分压偏置 前面的“改进型固定偏置”电路,虽然情况比原始的固定偏置电路好了一点,但还是不太理想,于是人们又设计出了性能更加稳定的分压偏置(voltage-divider bias configuration)电路,如下图所示: 图3-6.06 分压偏置电路的稳定性非常完美,放大系数β的变化对输出静态工作点IC和VCE几乎没有什么影响,我们在下面的分析中可以验证这一点. 对于分压偏置的输入端分析,有“近似分析”和“精确分析”两种方法,一般在实际工程应用中,“近似分析”法

初级模拟电路:3-9 BJT三极管实现逻辑门

回到目录 BJT晶体管可以实现逻辑门,事实上,在场效应管被发明用于集成电路以前,各种逻辑门芯片中的电路就是用BJT晶体管来实现的.最早人们使用二极管与BJT组合来实现逻辑门,这个称为二极管-晶体管逻辑(Diode-Transistor Logic),简称DTL:后来改进为全部用BJT晶体管来实现逻辑门,这个称为晶体管-晶体管逻辑(Transistor-Transistor Logic),简称TTL.早期广为人知的TTL电平,就是基于这种用BJT晶体管实现的逻辑门.TTL的优点是响应速度比较快,缺