NYOJ - 矩形嵌套(经典dp)

矩形嵌套
时间限制:3000 ms | 内存限制:65535 KB

描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。

输入第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽输出每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行样例输入
1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2

样例输出
5
分析:经典dp问题,分两步来解决,将数据排序,得到一个递增的序列,进而将问题转化为最长递增子序列问题。。。

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 using namespace std;
 6
 7 const int maxn = 1010;
 8 struct ans{
 9     int x,y;
10 } a[maxn];
11 int dp[maxn];
12
13 bool cmp(struct ans a,struct ans b){
14     if(a.x<b.x) return 1;
15     else if(a.x==b.x&&a.y<b.y){
16         return 1;
17     }
18     else{
19         return 0;
20     }
21 }
22
23 bool max(struct ans m, struct ans n){
24     if(m.x<n.x&&m.y<n.y) return 1;
25     else return 0;
26 }
27
28 int main(){
29     int n,m;
30     cin>>n;
31     while(n--){
32         cin>>m;
33         for( int i=0; i<m; i++ ){
34             cin>>a[i].x>>a[i].y;
35             if(a[i].x>a[i].y){
36                 int tmp=a[i].x;
37                 a[i].x=a[i].y;
38                 a[i].y=tmp;
39             }
40         }
41         sort(a,a+m,cmp);
42         cout<<endl;
43         for( int i=0; i<m; i++ ){
44             cout<<a[i].x<<" "<<a[i].y<<endl;
45         }
46         memset(dp,0,sizeof(dp));
47         for( int i=1;i<m; i++ ){
48             for( int j=0; j<i; j++ ){
49                 if(max(a[j],a[i])&&dp[i]<dp[j]+1){
50                     dp[i]=dp[j]+1;
51                 }
52             }
53         }
54         int result = dp[0];
55         for( int i=1; i<m; i++ ){
56             if(result<dp[i]) result=dp[i];
57         }
58         cout<<result+1<<endl;
59     }
60     return 0;
61 }

原文地址:https://www.cnblogs.com/Bravewtz/p/10389662.html

时间: 2024-10-10 01:29:05

NYOJ - 矩形嵌套(经典dp)的相关文章

NYOJ16 矩形嵌套 【DP】

矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中.你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内. 输入 第一行是一个正正数N(0<N<10),表示测试数据组数, 每组

NYOJ 16 矩形嵌套【DP】

解题思路:呃,是看的紫书上面的做法,一个矩形和另一个矩形之间的关系就只有两种,(因为它自己是不能嵌套自己的),可嵌套,不可嵌套,是一个二元关系,如果可嵌套的话,则记为1,如果不可嵌套的话则记为0,就可以转化为求DAG(有向无环图,即一个点无论通过怎样的路径都不能回到自己这个点的图,符合本题矩形不能自己嵌套自己) d(i)表示从i点出发的最长路长度,最后再找出d(i)中的最大值即可. 矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用

[NYIST16]矩形嵌套(DP,最长上升子序列)

题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=16 像套娃一样把矩形套起来.先给矩形从小到大排序,然后做最长上升子序列就行 1 /* 2 ━━━━━┒ギリギリ♂ eye! 3 ┓┏┓┏┓┃キリキリ♂ mind! 4 ┛┗┛┗┛┃\○/ 5 ┓┏┓┏┓┃ / 6 ┛┗┛┗┛┃ノ) 7 ┓┏┓┏┓┃ 8 ┛┗┛┗┛┃ 9 ┓┏┓┏┓┃ 10 ┛┗┛┗┛┃ 11 ┓┏┓┏┓┃ 12 ┛┗┛┗┛┃ 13 ┓┏┓┏┓┃ 14 ┃┃┃┃┃┃ 15

NYOJ 16 矩形嵌套(经典DP)

http://acm.nyist.net/JudgeOnline/problem.php?pid=16 矩形嵌套 时间限制:3000 ms  |           内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中.你的任务是选出尽可能多的矩形排成一行,使得除最后一个

NYOJ 16 矩形嵌套 (DAG上的DP)

矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中.你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内. 输入 第一行是一个正正数N(0<N<10),表示测试数据组数, 每组

NYOJ 16 矩形嵌套

矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中.你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内. 输入 第一行是一个正正数N(0<N<10),表示测试数据组数,每组测

矩形嵌套-记忆化搜索(dp动态规划)

矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描写叙述 有n个矩形,每个矩形能够用a,b来描写叙述,表示长和宽. 矩形X(a,b)能够嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).比如(1,5)能够嵌套在(6,2)内,但不能嵌套在(3,4)中. 你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每个矩形都能够嵌套在下一个矩形内. 输入 第一行是一个正正数N(0<N<10).表示測试数据组

NYOJ 16 矩形嵌套(动态规划)

时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中.你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内. 输入 第一行是一个正正数N(0<N<10),表示测试数据组数,每组测试数据的第

Uva 103-Stacking Boxes(DP/矩形嵌套)

题目链接:点击打开链接 lrj白书第九章例题..DAG上的最长路..矩形嵌套 , 一个n维的矩形, a可以套在b内的条件是 a存在一个全排列 < b 可以读入的时候给 矩形排序..建图略麻烦.. #include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include <string> #include <cctype> #in