hdu3652 数位dp记忆化搜索

从未见过的船新版本数位dp,,省去了预处理过程,直接进行计算

#include<bits/stdc++.h>
using namespace std;
#define ll long long
int dp[20][20][5],n,len,bit[20];
//dp[i][j][k]:到i位数,前面模13=j,前面是1|不是1|有13的状态已经确定,后面的数的个数
//mod:前面%13的余数,flag=0|1|2:pos+1位不是1|是1|有13出现过了,lim:数的限制
int dfs(int pos,int mod,int flag,int lim){
    if(!lim && dp[pos][mod][flag]!=-1)//只有在无限制的情况下才能直接返回
        return dp[pos][mod][flag];
    if(pos<=0)return mod==0&&flag==2;
    int num,mod_x,flag_x,res=0;
    if(lim)num=bit[pos];else num=9;
    for(int i=0;i<=num;i++){
        mod_x=(mod*10+i)%13;
        flag_x=flag;
        if(flag==0 && i==1)flag_x=1;
        if(flag==1 && i!=1)flag_x=0;
        if(flag==1 && i==3)flag_x=2;
        res+=dfs(pos-1,mod_x,flag_x,lim&&i==num);
    }
    if(!lim)dp[pos][mod][flag]=res;
    return res;
}

int main(){
    while(cin>>n){
        memset(bit,0,sizeof bit);
        memset(dp,-1,sizeof dp);
        len=0;
        while(n){bit[++len]=n%10;n/=10;}
        cout<<dfs(len,0,0,1)<<endl;
    }
}

原文地址:https://www.cnblogs.com/zsben991126/p/10688699.html

时间: 2024-10-21 10:47:16

hdu3652 数位dp记忆化搜索的相关文章

[hihocoder 1033]交错和 数位dp/记忆化搜索

#1033 : 交错和 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0,?a1,?...,?an?-?1,定义交错和函数: f(x)?=?a0?-?a1?+?a2?-?...?+?(?-?1)n?-?1an?-?1 例如: f(3214567)?=?3?-?2?+?1?-?4?+?5?-?6?+?7?=?4 给定 输入 输入数据仅一行包含三个整数,l,?r,?k(0?≤?l?≤?r?≤?1018,?|k|

HDU 2089 不要62(数位dp&amp;记忆化搜索)

题目链接:[kuangbin带你飞]专题十五 数位DP C - 不要62 题意 杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer). 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司机和乘客的心理障碍,更安全地服务大众. 不吉利的数字为所有含有4或62的号码.例如: 62315 73418 88914 都属于不吉利号码.但是,61152虽然含有6和2,但不是62连号,所以不属于不吉利数字之列. 你的任务是,对于每次给

HDU 3652 B-number(数位dp&amp;记忆化搜索)

题目链接:[kuangbin带你飞]专题十五 数位DP G - B-number 题意 求1-n的范围里含有13且能被13整除的数字的个数. 思路 首先,了解这样一个式子:a%m == ((b%m)*c+d)%m; 式子的正确是显然的,就不证明了. 那么判断数是否可以被13整除就可以分解为一位一位进行处理. 当然,我们也只需要储存取余后的值. dfs(len, num, mod, flag) mod记录数字对13取余后的值 len表示当前位数 num==0 不含13且上一位不为1 pre==1

hdu 5787 数位dp,记忆化搜索

题意:求区间[l,r]内有多少个数符合,这个数的任意的相邻k位数(digits),这k个数都两两不相等 l,r范围是1~1e18,k是2~5 思路:数位DP,因为K<=5,我们最多需要保存下来当前位的前4位就足够了.因为dp[pos][p1][p2][p3][p4]表示,现在枚举取第pos位,pos位之前的四位分别为p1,p2,p3,p4,p4是pos的上一位.那么p1~p4的范围就是0~9,但是因为总位数小于当前数字的位数的数也要进行枚举,需要一个数字来区分它是前导0还是在中间时为0,令p =

数位dp/记忆化搜索

一.引例 #1033 : 交错和 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0, a1, ..., an - 1,定义交错和函数: f(x) = a0 - a1 + a2 - ... + ( - 1)n - 1an - 1 例如: f(3214567) = 3 - 2 + 1 - 4 + 5 - 6 + 7 = 4 给定 l, r, k,求在 [l, r] 区间中,所有 f(x) = k 的 x 的和,

bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义f[i][j][k]表示若前i个位置有k个j的此时的全局方案数,然后就可以记忆化搜索了(具体看代码吧) 代码: 1 #include<cstdio> 2 #include<cstring> 3 #include<cstdlib> 4 #include<cmath>

【每日dp】 Gym - 101889E Enigma 数位dp 记忆化搜索

题意:给你一个长度为1000的串以及一个数n 让你将串中的'?'填上数字 使得该串是n的倍数而且最小(没有前导零) 题解:dp,令dp[len][mod]为是否出现过 填到第len位,余数为mod 的状态(dp=0 or 1) 用记忆化搜索来实现,dfs返回1或0. 如果搜到最后一位并且余数为0,返回1. 如果搜到已经更新过的dp状态,直接返回0. 将mod作为全局变量,不断更新mod. 对于每一位 的'? ' 暴力枚举0~9 #include<stdio.h> #include<std

luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<algorithm> inline int read() { int x = 0,f = 1; char c = getchar(); while(c < '0' || c > '9') c = getchar(); while(c <= '9' && c >= '

11782 - Optimal Cut(树形DP+记忆化搜索)

题目链接:11782 - Optimal Cut 题意:按前序遍历给定一棵满二叉树,现在有k次,可以选k个节点,获得他们的权值,有两个条件: 1.一个节点被选了,他的子节点就不能选了. 2.最终选完后,根到所有叶子的路径上,都要有一个被选的节点. 思路:树形dp,dp[u][k]代表在结点u,可以选k个节点,那么就分两种情况 选u节点,dp[u][k] = node[u]; 选子节点之和,那么就把k次分配给左右孩子,dp[u][k] = max(dp[u][k], dp[u][i], dp[u]