Matplotlib学习目标
知道Matplotlib的架构
应用Matplotlib的基本功能实现图形显示
应用Matplotlib实现多图显示
应用Matplotlib实现不同画图种类
2.1 Matplotlib之HelloWorld
学习目标
- 目标
- 快速掌握Matplotlib画图
- 应用
- 无
2.1.1 什么是Matplotlib
- 是专门用于开发2D图表(包括3D图表)
- 使用起来及其简单
- 以渐进、交互式方式实现数据可视化
2.1.2 为什么要学习Matplotlib
可视化是在整个数据挖掘的关键辅助工具,可以清晰的理解数据,从而调整我们的分析方法。
- 能将数据进行可视化,更直观的呈现
- 使数据更加客观、更具说服力
例如下面两个图为数字展示和图形展示:
2.1.3 实现一个简单的Matplotlib画图
import matplotlib.pyplot as plt plt.figure(figsize=(20, 8), dpi = 100) plt.plot([1,2,3], [4,5,6]) plt.show()
2.1.4 认识Matplotlib图像结构
2.1.5 拓展知识点:Matplotlib三层结构
1 容器层
容器层主要由Canvas、Figure、Axes组成。
Canvas是位于最底层的系统层,在绘图的过程中充当画板的角色,即放置画布(Figure)的工具。
Figure是Canvas上方的第一层,也是需要用户来操作的应用层的第一层,在绘图的过程中充当画布的角色。
Axes是应用层的第二层,在绘图的过程中相当于画布上的绘图区的角色。
- Figure:指整个图形(可以通过plt.figure()设置画布的大小和分辨率等)
- Axes(坐标系):数据的绘图区域
- Axis(坐标轴):坐标系中的一条轴,包含大小限制、刻度和刻度标签
特点为:
- 一个figure(画布)可以包含多个axes(坐标系/绘图区),但是一个axes只能属于一个figure。
- 一个axes(坐标系/绘图区)可以包含多个axis(坐标轴),包含两个即为2d坐标系,3个即为3d坐标系
2 辅助显示层
辅助显示层为Axes(绘图区)内的除了根据数据绘制出的图像以外的内容,主要包括Axes外观(facecolor)、边框线(spines)、坐标轴(axis)、坐标轴名称(axis label)、坐标轴刻度(tick)、坐标轴刻度标签(tick label)、网格线(grid)、图例(legend)、标题(title)等内容。
该层的设置可使图像显示更加直观更加容易被用户理解,但又不会对图像产生实质的影响。
3 图像层
图像层指Axes内通过plot、scatter、bar、histogram、pie等函数根据数据绘制出的图像。
总结:
- Canvas(画板)位于最底层,用户一般接触不到
- Figure(画布)建立在Canvas之上
- Axes(绘图区)建立在Figure之上
- 坐标轴(axis)、图例(legend)等辅助显示层以及图像层都是建立在Axes之上
- 数据挖掘基础
- 1. 数据挖掘基础环境安装与使用
- 2. Matplotlib
- 3. Numpy
- 4. Pandas
- 5. 金融数据分析与挖掘1
- 6. 金融数据分析与挖掘2
- Published with GitBook
原文地址:https://www.cnblogs.com/kaiping23/p/10262400.html
时间: 2024-10-10 05:48:30