关于hive和spark日志问题

在用控制台学习hive和spark的时候,总是打印出来的各种日志烦得不行(对我而言)。所以就想把着写我不关心的信息屏蔽掉,只保留错误信息。其实输出的日志信息还是很有用的,因为里面的日志信息可以清楚的描述任务执行的过程和细节。对hive和spark基本运行原理有了了解之后,我觉得完全可以屏蔽掉这些信息。

于是寻找教程,搞了一把。主要就是修改log4j.properties这个文件

没处理之前是这个样子的:

处理之后是这个样子的:

具体的怎么设置,看下面的博文吧,很详细。

http://blog.csdn.net/azheng270/article/details/2173430/

时间: 2024-11-05 04:28:23

关于hive和spark日志问题的相关文章

spark 2.0.0集群安装与hive on spark配置

1. 环境准备: JDK1.8 hive 2.3.4 hadoop 2.7.3 hbase 1.3.3 scala 2.11.12 mysql5.7 2. 下载spark2.0.0 cd /home/worksapce/software wget https://archive.apache.org/dist/spark/spark-2.0.0/spark-2.0.0-bin-hadoop2.7.tgz tar -xzvf spark-2.0.0-bin-hadoop2.7.tgz mv spa

伪分布式Spark + Hive on Spark搭建

Spark大数据平台有使用一段时间了,但大部分都是用于实验而搭建起来用的,搭建过Spark完全分布式,也搭建过用于测试的伪分布式.现在是写一遍随笔,记录一下曾经搭建过的环境,免得以后自己忘记了.也给和初学者以及曾经挖过坑的人用作参考. Hive on Spark是Hive跑在Spark上,用的是Spark执行引擎,而不是默认的MapReduce. 可以查阅官网的资源Hive on Spark: Getting Started. 一 .安装基础环境 1.1 Java1.8环境搭建 1) 下载jdk

Apache Spark源码走读之12 -- Hive on Spark运行环境搭建

欢迎转载,转载请注明出处,徽沪一郎. 楔子 Hive是基于Hadoop的开源数据仓库工具,提供了类似于SQL的HiveQL语言,使得上层的数据分析人员不用知道太多MapReduce的知识就能对存储于Hdfs中的海量数据进行分析.由于这一特性而收到广泛的欢迎. Hive的整体框架中有一个重要的模块是执行模块,这一部分是用Hadoop中MapReduce计算框架来实现,因而在处理速度上不是非常令人满意.由于Spark出色的处理速度,有人已经成功将HiveQL的执行利用Spark来运行,这就是已经非常

Hive on Spark

Hive On Spark 一.概述 Hive 是一种数据仓库,即是一种sql翻译器,hive可以将sql翻译成mapreduce程序在hadoop中去执行,默认支持原生的Mapreduce引擎.从hive1.1版本以后开始支持Spark.可以将sql翻译成RDD在spark里面执行.Hive支持的spark是那种spark-without-hive,即没有编译支持hive包的spark. 二.安装版本及软件 需要安装:scala-2.12.jdk1.8.hive-2.1.1.spark-1.6

hive on Spark部署

一.环境 1.zk集群 10.10.103.144:2181,10.10.103.246:2181,10.10.103.62:2181 2.metastore数据库 10.10.103.246:3306 二.安装 1.安装配置数据库 yum -y install mysql55-server mysql55 GRANT ALL PRIVILEGES ON metastore.* TO 'hive'@'localhost' IDENTIFIED BY 'hive'; GRANT ALL PRIVI

hive on spark 编译

前置条件说明 Hive on Spark是Hive跑在Spark上,用的是Spark执行引擎,而不是MapReduce,和Hive on Tez的道理一样. 从Hive 1.1版本开始,Hive on Spark已经成为Hive代码的一部分了,并且在spark分支上面,可以看这里https://github.com/apache/hive/tree/spark,并会定期的移到master分支上面去. 关于Hive on Spark的讨论和进度,可以看这里https://issues.apache

Hive on Spark安装与配置(无数坑)

一.版本如下    注意:Hive on Spark对版本有着严格的要求,下面的版本是经过验证的版本 apache-hive-2.3.2-bin.tar.gz hadoop-2.7.2.tar.gz jdk-8u144-linux-x64.tar.gz mysql-5.7.19-1.el7.x86_64.rpm-bundle.tar mysql-connector-java-5.1.43-bin.jar spark-2.0.0.tgz(spark源码包,需要从源码编译) Redhat Linux

Spark日志级别修改

摘要 在学习使用Spark的过程中,总是想对内部运行过程作深入的了解,其中DEBUG和TRACE级别的日志可以为我们提供详细和有用的信息,那么如何进行合理设置呢,不复杂但也绝不是将一个INFO换为TRACE那么简单. 主要问题 调整Spark日志级别的配置文件是$SPARK_HOME/conf/log4j.properties,默认级别是INFO,如果曾经将其改为DEBUG的朋友可能会有这样的经历,有用的信息还没看完,就被大量的心跳检测日志给淹没了. 解决办法 只将需要的日志级别调整为_TRAC

关于hive on spark会话的共享状态

spark sql中有一个类: org.apache.spark.sql.internal.SharedState 它是用来做: 1.元数据地址管理(warehousePath) 2.查询结果缓存管理(cacheManager) 3.程序中的执行状态和metrics的监控(statusStore) 4.默认元数据库的目录管理(externalCatalog) 5.全局视图管理(主要是防止元数据库中存在重复)(globalTempViewManager) 1:首先介绍元数据地址管理(warehou