LSTM基础

DNN,CNN,RNN:
1.DNN:深度神经网络,或称多层感知机。解决早期单层感知机对于复杂函数不能模拟的情况。其形式为层之间全连接。实用sig等连续性函数模拟神经对机理的响应,训练算法使用    BP。

2.问题:只是名义上的深层。

  a:随着层数的加深,优化函数更加容易陷入局部最优解。并且会越来越偏离

  b:梯度消失情况更加严重。每传递一层,梯度衰减为原来的0.25;

  c:多层全连接导致参数膨胀;
 当时解决方法:

  a:实用预训练方法缓解最优解。

  b:为客服梯度消失,实用relu,maxou等传输函数代替sigMoid;
3.CNN:不是所有上下层神经元都能直接相连,而是通过“卷积核”作为中介。同一个卷积核在所有图像内是共享的,图像通过卷积操作后仍然保留原先的位置关系.对于一个图像分别     用多个卷积核进行描述,每个卷积核学习到不提不同的结构特征。最后一层是全连接层。

4.RNN:可以对变化的时间序列进行建模。对于自然语言处理,语音识别,手写体识别非常重要。

5.LSTM隐含层示例:

  

时间: 2024-11-05 22:50:55

LSTM基础的相关文章

(数据科学学习手札39)RNN与LSTM基础内容详解

一.简介 循环神经网络(recurrent neural network,RNN),是一类专门用于处理序列数据(时间序列.文本语句.语音等)的神经网络,尤其是可以处理可变长度的序列:在与传统的时间序列分析进行比较的过程之中,RNN因为其梯度弥散等问题对长序列表现得不是很好,而据此提出的一系列变种则展现出很明显的优势,最具有代表性的就是LSTM(long short-term  memory),而本文就从标准的循环神经网络结构和原理出发,再到LSTM的网络结构和原理,对其有一个基本的认识和阐述:

java web 开发三剑客 -------电子书

Internet,人们通常称为因特网,是当今世界上覆盖面最大和应用最广泛的网络.根据英语构词法,Internet是Inter + net,Inter-作为前缀在英语中表示“在一起,交互”,由此可知Internet的目的是让各个net交互.所以,Internet实质上是将世界上各个国家.各个网络运营商的多个网络相互连接构成的一个全球范围内的统一网,使各个网络之间能够相互到达.各个国家和运营商构建网络采用的底层技术和实现可能各不相同,但只要采用统一的上层协议(TCP/IP)就可以通过Internet

Deep Learning基础--理解LSTM/RNN中的Attention机制

导读 目前采用编码器-解码器 (Encode-Decode) 结构的模型非常热门,是因为它在许多领域较其他的传统模型方法都取得了更好的结果.这种结构的模型通常将输入序列编码成一个固定长度的向量表示,对于长度较短的输入序列而言,该模型能够学习出对应合理的向量表示.然而,这种模型存在的问题在于:当输入序列非常长时,模型难以学到合理的向量表示. 在这篇博文中,我们将探索加入LSTM/RNN模型中的attention机制是如何克服传统编码器-解码器结构存在的问题的. 通过阅读这篇博文,你将会学习到: 传

Deep Learning基础--理解LSTM网络

循环神经网络(RNN) 人们的每次思考并不都是从零开始的.比如说你在阅读这篇文章时,你基于对前面的文字的理解来理解你目前阅读到的文字,而不是每读到一个文字时,都抛弃掉前面的思考,从头开始.你的记忆是有持久性的. 传统的神经网络并不能如此,这似乎是一个主要的缺点.例如,假设你在看一场电影,你想对电影里的每一个场景进行分类.传统的神经网络不能够基于前面的已分类场景来推断接下来的场景分类. 循环神经网络(Recurrent Neural Networks)解决了这个问题.这种神经网络带有环,可以将信息

(转)零基础入门深度学习(6) - 长短时记忆网络(LSTM)

无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,<零基础入门深度学习>系列文章旨在讲帮助爱编程的你从零基础达到入门级水平.零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章.虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean

机器学习 —— 基础整理(六):线性判别函数——感知器、松弛算法、Ho-Kashyap算法

本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 (一)线性判别函数与广义线性判别函数 一.线性判别函数 这篇总结继续关注分类问题.假设判别函数(Discriminant function)的参数形式已知,用训练的方法直接根据样本估计判别函数的参数.线性判别函数的形式为: $$g(\textbf x)=\textbf w^{\top}\textbf x+w_0$$ $\textbf x\in \mathbb R^d$ 是

『TensotFlow』基础RNN网络回归问题

两个tensorflow收获 lstm_cell.zero_state()节点虽然不是占位符但是可以feed,如果不feed每个batch训练tf都会重新初始化一遍,篇尾会详细讨论这个发现. tf.contrib.legacy_seq2seq.sequence_loss_by_example()的使用 任务简介 如下图所示,此次的目标是使用蓝色的虚线作为输入,拟合红色的实线输出: 这和文本预测不一样,也和一般的预测型任务很不一样,正常都是使用同一条线,使用前面的作为输入去拟合后面的输出. 不过正

[Mechine Learning &amp; Algorithm] 神经网络基础

目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网.人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革.要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念.当然,这里所说的神经网络不是生物学的神经网络,我们将其称之为人工神经网络(Artificial Neural Networks,简称ANN)貌似更为合理.神经网络最早是人工智能领域的一种算法或者说是模型,目前神经网络已经发展成为一类多学科交叉的

使用深度双向LSTM模型构造社区问答系统

/* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/ author: 张俊林 关于社区问答系统的问题背景,我们在之前的"利用卷积神经网络构造社区问答系统"一文里已经说明得很清楚,本文就不再赘述,不清楚背景的读者可自行参照上文,我们这些相关的研发工作主要是为了开发畅捷通"会计家园"交流社区的相关功能.为了保持行文完整,简明叙述形式化描述的问题如下: 假设我们已知问答库如下: 其中,Qi是问答社区中的历史问题,Ai是Qi问题的精华答案: 现有社区用户