Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18653 Accepted Submission(s): 6129
Problem Description
Now
I think you have got an AC in Ignatius.L‘s "Max Sum" problem. To be a
brave ACMer, we always challenge ourselves to more difficult problems.
Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But
I`m lazy, I don‘t want to write a special-judge module, so you don‘t
have to output m pairs of i and j, just output the maximal summation of
sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3
1 2 3
2 6
-1 4 -2 3 -2 3
Sample Output
6
8
Hint
Huge input, scanf and dynamic programming is recommended.
dp[i][j][0] ... 表示前i个数分成j个组,不选第i个数的最大得分
dp[i][j][1] ... 表示前i个数分成j个组,选第i个数的最大得分
因为状态i只跟状态i-1, 所以可以用滚动数组来减空间
取最要自己写 。 否则卡常数会超时
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> using namespace std ; const int N = 100010; const int inf = 1e9+7; int dp[2][N][2] , n , m , x[N] ; inline int MAX( int a , int b ) { if( a > b ) return a ; else return b ; } int main() { // freopen("in.txt","r",stdin); while( ~scanf("%d%d",&m,&n) ) { for( int i = 1 ; i <= n ; ++i ) { scanf("%d",&x[i]); } int v = 0 ; dp[v][0][0] = 0 ; dp[v][1][1] = x[1] ; for( int i = 1 ; i < n ; ++i ) { for( int j = 0 ; j <= i + 1 && j <= m ; j++ ) { dp[v^1][j][0] = dp[v^1][j][1] = -inf ; } for( int j = min( m , i ) ; j >= 0 ; --j ) { if( j != i ) { dp[v^1][j+1][1] = MAX( dp[v][j][0] + x[i+1] , dp[v^1][j+1][1] ); dp[v^1][j][0] = MAX( dp[v][j][0] , dp[v^1][j][0]); } if( j != 0 ) { dp[v^1][j][1] = MAX ( dp[v^1][j][1] , dp[v][j][1] + x[i+1] ) ; dp[v^1][j+1][1] = MAX ( dp[v^1][j+1][1] , dp[v][j][1] + x[i+1] ) ; dp[v^1][j][0] = MAX ( dp[v^1][j][0] , dp[v][j][1] ) ; } } v ^= 1 ; } int ans = -inf ; if( m < n ) ans = MAX( ans , dp[v][m][0] ); if( m > 0 ) ans = MAX( ans , dp[v][m][1] ); printf("%d\n",ans); } return 0 ; }