我对贝叶斯分类器的理解

我们能够得到其统计概率密度例如以下:

这样我们就知道该概率密度曲线大致符合正态分布。例如以下图所看到的

大概能够看出它在中心非常集中,边缘非常少,我们能够假定它服从高斯分布(正态分布),其概率密度函数如下:

时间: 2024-09-29 20:31:13

我对贝叶斯分类器的理解的相关文章

PGM学习之三 朴素贝叶斯分类器(Naive Bayes Classifier)

介绍朴素贝叶斯分类器的文章已经很多了.本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解. 一 朴素贝叶斯分类器基础回顾 朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较高的情况.虽然朴素贝叶斯分类器很简单,但是它确经常比一些复杂的方法表现还好. 为了简单阐述贝叶斯分类的基本原理,我们使用上图所示的例子来说明.作为先验,我们知道一个球要么是红球要么是绿球.我们的任务是当有新的输入(New Cases)时,我们给出新输入的物体的类别(红或者绿).这是贝叶斯分类器的典型

理解朴素贝叶斯分类器的三层境界

1.背景 首先,在文章的开头,先提出几个问题,如果这些问题你都答得上来,那么本文你就无需阅读了,或者你阅读的动机纯粹是给本文挑毛病,当然我也无比欢迎,请发送邮件"毛病の朴素贝叶斯"发送至[email protected],我会认真阅读你的来信. By the way,如果阅读完本文,你还是无法回答以下问题,那么也请你邮件通知我,我会尽量解答你的疑惑. 朴素贝叶斯分类器中的"朴素"特指此分类器的什么特性 朴素贝叶斯分类器与极大似然估计(MLE).最大后验概率(MAP)

朴素贝叶斯分类器的应用-转载加我的理解注释

生活中很多场合需要用到分类,比如新闻分类.病人分类等等. 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法. 一.病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难. 某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒  打喷嚏 农夫 过敏  头痛 建筑工人 脑震荡  头痛 建筑工人 感冒  打喷嚏 教师 感冒  头痛 教师 脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人.请问他患

数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes

贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.眼下研究较多的贝叶斯分类器主要有四种,各自是:Naive Bayes.TAN.BAN和GBN. 贝叶斯网络是一个带有概率凝视的有向无环图,图中的每个结点均表示一个随机变量,图中两结点 间若存在着一条弧,则表示这两结点相相应的随机变量是概率相依的,反之则说明这两个随机变量是条件独立的.网络中随意一个结点X 均有一个对应的条件概率表(Con

【原创】.NET平台机器学习组件-Infer.NET连载(二)简单贝叶斯分类器的例子—【附源码和自制帮助文档】

Infer.NET机器学习翻译系列文章将进行连载,感兴趣的朋友请收藏或关注 你还可以参考本博客其他.NET开源项目的相关文章: [原创]彩票预测算法:离散型马尔可夫链模型          Newlife XCode组件资源目录汇总[2013年版] [原创]开源.NET下的XML数据库介绍及入门          [原创].NET开源压缩组件介绍与入门 [开源].NET开源表达式计算组件介绍与使用          [原创]开源Word读写组件DocX介绍与入门 [原创]Matlab.NET混编

十大经典数据挖掘算法(9) 朴素贝叶斯分类器 Naive Bayes

贝叶斯分类器 贝叶斯分类分类原则是一个对象的通过先验概率.贝叶斯后验概率公式后计算.也就是说,该对象属于一类的概率.选择具有最大后验概率的类作为对象的类属.现在更多的研究贝叶斯分类器,有四个,每间:Naive Bayes.TAN.BAN和GBN. 贝叶斯网络是一个带有概率凝视的有向无环图.图中的每个结点均表示一个随机变量,图中两结点 间若存在着一条弧.则表示这两结点相相应的随机变量是概率相依的,反之则说明这两个随机变量是条件独立的.网络中随意一个结点X 均有一个对应的条件概率表(Conditio

朴素贝叶斯分类器(一)

这两天看了下朴素贝叶斯分类器,在这里根据自己的理解做个简单笔记,也顺便整理一下思路. 一.简介 1. 什么是朴素贝叶斯分类器?    朴素贝叶斯分类器是一种应用基于独立假设的贝叶斯定理的简单概率分类器.基于独立假设的意思是假设样本每个特征与其他特征都不相关,例如,一个物体具有颜色.大小.重量和材质等特征,这些特征互不相关,即不管什么颜色不会影响大小,不管大小如何也不会影响其颜色. 2. 什么是贝叶斯定理? 贝叶斯定理(Bayes' theorem)是概率论中的一个结论,它跟随机变量和条件概率(C

机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)

朴素贝叶斯分类器是一组简单快速的分类算法.网上已经有很多文章介绍,比如这篇写得比较好:https://blog.csdn.net/sinat_36246371/article/details/60140664.在这里,我按自己的理解再整理一遍. 在机器学习中,我们有时需要解决分类问题.也就是说,给定一个样本的特征值(feature1,feature2,...feauren),我们想知道该样本属于哪个分类标签(label1,label2,...labeln).即:我们想要知道该样本各个标签的条件概

朴素贝叶斯分类器及Python实现

贝叶斯定理 贝叶斯定理是通过对观测值概率分布的主观判断(即先验概率)进行修正的定理,在概率论中具有重要地位. 先验概率分布(边缘概率)是指基于主观判断而非样本分布的概率分布,后验概率(条件概率)是根据样本分布和未知参数的先验概率分布求得的条件概率分布. 贝叶斯公式: P(A∩B) = P(A)*P(B|A) = P(B)*P(A|B) 变形得: P(A|B)=P(B|A)*P(A)/P(B) 其中 P(A)是A的先验概率或边缘概率,称作"先验"是因为它不考虑B因素. P(A|B)是已知