UVA 11314 - Hardly Hard(数论)

题目链接:11314 - Hardly Hard

题意:给定A,B两点,求Y轴上一点C和X轴上一点D,使得该四边形周长最小。

思路:B以Y轴做对称点,A以X轴做对称点,然后两点相连就是其他三边的周长,因为两点间线段最短,然后再加上AB长度即可

代码:

#include <stdio.h>
#include <string.h>
#include <math.h>

int t;
struct Point {
	double x, y;
	Point() {}
	Point(double _x, double _y) {
		x = _x; y = _y;
	}
	void scan() {
		scanf("%lf%lf", &x, &y);
	}
} a, b, c, d;

double dis(Point a, Point b) {
	double x = a.x - b.x;
	double y = a.y - b.y;
	return sqrt(x * x + y * y);
}

int main() {
	scanf("%d", &t);
	while (t--) {
		a.scan();
		b.scan();
		c = Point(-b.x, b.y);
		d = Point(a.x, -a.y);
		printf("%.3lf\n", dis(a, b) + dis(c, d));
	}
	return 0;
}

UVA 11314 - Hardly Hard(数论),码迷,mamicode.com

时间: 2024-10-09 22:51:06

UVA 11314 - Hardly Hard(数论)的相关文章

uva 10560 - Minimum Weight(数论)

题目连接:uva 10560 - Minimum Weight 题目大意:给出n,问说至少需要多少个不同重量的砝码才能称量1~n德重量,给出所选的砝码重量,并且给出k,表示有k个重量需要用上述所选的砝码测量. 解题思路:重量为1的砝码肯定要选,它可以表示到1的重量,那么下一个砝码的重量肯定选择3(2?1+1),这样1,3分别可以用一个砝码表示,而2,4分别为3-1和3+1,这样1~4的重量也都可以表示.于是有公式ai=si?1?2+1. #include <cstdio> #include &

uva 11105 - Semi-prime H-numbers(数论)

题目链接:uva 11105 - Semi-prime H-numbers 题目大意:H-number为4?k+1(k为非负数),H-composites为因子中含有H-number(不包括自己本身)的数,反之久是H-prime,给定n,求有多少H-composites. 解题思路:首先用筛选法求出范围内的H-prime,然后枚举两个判断乘积是否在范围内. #include <cstdio> #include <cstring> const int maxn = 1e6+5; ty

UVA 11754 - Code Feat(数论)

UVA 11754 - Code Feat 题目链接 题意:给定一个c个x, y1,y2,y3..yk形式,前s小的答案满足s % x在集合y1, y2, y3 ... yk中 思路:LRJ大白例题,分两种情况讨论 1.所有x之积较小时候,暴力枚举每个集合选哪个y,然后中国剩余定理求解 2.所有x之积较大时候,选定一个k/x尽可能小的序列,枚举x * t + y (t = 1, 2, 3...)去暴力求解. 代码: #include <stdio.h> #include <string.

UVA 718 - Skyscraper Floors(数论)

UVA 718 - Skyscraper Floors 题目链接 题意:在一个f层高的楼上,有e个电梯,每个电梯有x,y表示y + k * x层都可以到,现在要问从a层能否到达b层(中间怎么换乘电梯不限制) 思路:对于两个电梯间能不能换乘,只要满足y[i] + xx x[i] == y[j] + yy y[j].然后移项一下,就可以用拓展欧几里得求解,进而求出x,y的通解,然后利用通解范围x' >= 0, y' >= 0, x[i] x' + y[i] <= f, x[j] y' + y

UVA 10692 - Huge Mods(数论)

UVA 10692 - Huge Mods 题目链接 题意:求a0a1a2...mod m 思路:直接算肯定不行,利用欧拉定理ab=a(b mod phi(m) + phi(m))(b>=phi(m)),对指数进行降值处理,然后就可以利用快速幂去计算了,计算过程利用递归求解. 代码: #include <stdio.h> #include <string.h> const int N = 1005; int phi[N * 10], vis[N * 10], m, n, a[

uva 718 - Skyscraper Floors(数论+bfs)

题目链接:uva 718 - Skyscraper Floors 题目大意:一栋大楼,有F层楼,E个电梯,现在要从A层到B层,问是否可行,每个电梯给出Xi和Yi,代表这个电梯可以到达的层数Yi+k?Xi(k≥0) 解题思路:建图,以A,B以及电梯为节点建图,将可以到达A,B这两层的电梯与这两点建边,在将两两电梯可以达到同一层的建边,判断方法为:Yi+aXi=Yj+bXj,移项得:aXi+bXj=Yj?Yi,即是一个线性方程,用拓展欧几里得算法求出通解的形式,判断是否存在通解在0~F之间即可. #

UVA 10623 - Thinking Backward(数论)

UVA 10623 - Thinking Backward 题目链接 题意:给定一个数量,求用圆,椭圆,三角形分割平面,分割出该数量,输出所有情况 思路:有公式2 + 2m(m-1) + n(n-1) + 4mn + 3p(p-1) + 6mp + 6np 由于m和p都是[0,100],所以可以枚举m和p,去求出n,然后判断合不合适 代码: #include <stdio.h> #include <string.h> #include <math.h> #include

uva 11728 - Alternate Task(数论)

题目链接:uva 11728 - Alternate Task 题目大意:给出S,求N,要求N所有的因子和为S. 解题思路:枚举因子i,所有整除i的数和加上i. #include <cstdio> #include <cstring> const int N = 1005; int n, c[N], v[N]; void init () { memset(c, 0, sizeof(c)); memset(v, -1, sizeof(v)); for (int i = 1; i &l

UVA 10951 - Polynomial GCD(数论)

UVA 10951 - Polynomial GCD 题目链接 题意:给定两个多项式,求多项式的gcd,要求首项次数为1,多项式中的运算都%n,并且n为素数. 思路:和gcd基本一样,只不过传入的是两个多项式,由于有%n这个条件,所以计算过程可以用乘法逆去计算除法模,然后最后输出的时候每项除掉首项的次数就是答案了. 代码: #include <stdio.h> #include <string.h> #include <vector> using namespace s