c++大数板子

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;

/*
 * 完全大数模板
 * 输出cin>>a
 * 输出a.print();
 * 注意这个输入不能自动去掉前导0的,可以先读入到char数组,去掉前导0,再用构造函数。
 * by kuangbin GG.
 */
#define MAXN 9999
#define MAXSIZE 1010
#define DLEN 4

class BigNum
{
    private:
        int a[5000]; //可以控制大数的位数
        int len;
    public:
        BigNum(){len=1;memset(a,0,sizeof(a));} //构造函数
        BigNum(const ll); //将一个int类型的变量转化成大数
        BigNum(const char*); //将一个字符串类型的变量转化为大数
        BigNum(const BigNum &); //拷贝构造函数
        BigNum &operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算
        friend istream& operator>>(istream&,BigNum&); //重载输入运算符
        friend ostream& operator<<(ostream&,BigNum&); //重载输出运算符
        BigNum operator+(const BigNum &)const; //重载加法运算符,两个大数之间的相加运算
        BigNum operator-(const BigNum &)const; //重载减法运算符,两个大数之间的相减运算
        BigNum operator*(const BigNum &)const; //重载乘法运算符,两个大数之间的相乘运算
        BigNum operator/(const int &)const; //重载除法运算符,大数对一个整数进行相除运算

        BigNum operator^(const int &)const; //大数的n次方运算
        int operator%(const int &)const; //大数对一个int类型的变量进行取模运算
        bool operator>(const BigNum &T)const; //大数和另一个大数的大小比较
        bool operator>(const int &t)const; //大数和一个int类型的变量的大小比较
        void print(); //输出大数
};
BigNum::BigNum(const ll b) //将一个int类型的变量转化为大数
{
    ll c,d=b;
    len=0;
    memset(a,0,sizeof(a));
    while(d>MAXN)
    {
        c=d-(d/(MAXN+1))*(MAXN+1);
        d=d/(MAXN+1);
        a[len++]=c;
    }
    a[len++]=d;
}
BigNum::BigNum(const char *s) //将一个字符串类型的变量转化为大数
{
    int t,k,index,L,i;
    memset(a,0,sizeof(a));
    L=strlen(s);
    len=L/DLEN;
    if(L%DLEN)len++;
    index=0;
    for(i=L-1;i>=0;i-=DLEN)
    {
        t=0;
        k=i-DLEN+1;
        if(k<0)k=0;
        for(int j=k;j<=i;j++)
            t=t*10+s[j]-'0';
        a[index++]=t;
    }
}
BigNum::BigNum(const BigNum &T):len(T.len) //拷贝构造函数
{
    int i;
    memset(a,0,sizeof(a));
    for(i=0;i<len;i++)
        a[i]=T.a[i];
}
BigNum & BigNum::operator=(const BigNum &n) //重载赋值运算符,大数之间赋值运算
{
    int i;
    len=n.len;
    memset(a,0,sizeof(a));
    for(i=0;i<len;i++)
        a[i]=n.a[i];
    return *this;
}
istream& operator>>(istream &in,BigNum &b)
{
    char ch[MAXSIZE*4];
    int i=-1;
    in>>ch;
    int L=strlen(ch);
    int count=0,sum=0;
    for(i=L-1;i>=0;)
    {
        sum=0;
        int t=1;
        for(int j=0;j<4&&i>=0;j++,i--,t*=10)
        {
            sum+=(ch[i]-'0')*t;
        }
        b.a[count]=sum;
        count++;
    }
    b.len=count++;
    return in;
}
ostream& operator<<(ostream& out,BigNum& b) //重载输出运算符
{
    int i;
    cout<<b.a[b.len-1];
    for(i=b.len-2;i>=0;i--)
    {
        printf("%04d",b.a[i]);
    }
    return out;
}
BigNum BigNum::operator+(const BigNum &T)const //两个大数之间的相加运算
{
    BigNum t(*this);
    int i,big;
    big=T.len>len?T.len:len;
    for(i=0;i<big;i++)
    {
        t.a[i]+=T.a[i];
        if(t.a[i]>MAXN)
        {
            t.a[i+1]++;
            t.a[i]-=MAXN+1;
        }
    }
    if(t.a[big]!=0)
        t.len=big+1;
    else t.len=big;
    return t;
}
BigNum BigNum::operator-(const BigNum &T)const //两个大数之间的相减运算
{
    int i,j,big;
    bool flag;
    BigNum t1,t2;
    if(*this>T)
    {
        t1=*this;
        t2=T;
        flag=0;
    }
    else
    {
        t1=T;
        t2=*this;
        flag=1;
    }
    big=t1.len;
    for(i=0;i<big;i++)
    {
        if(t1.a[i]<t2.a[i])
        {
            j=i+1;
            while(t1.a[j]==0)
                j++;
            t1.a[j--]--;
            while(j>i)
                t1.a[j--]+=MAXN;
            t1.a[i]+=MAXN+1-t2.a[i];
        }
        else t1.a[i]-=t2.a[i];
    }
    t1.len=big;
    while(t1.a[len-1]==0 && t1.len>1)
    {
        t1.len--;
        big--;
    }
    if(flag)
        t1.a[big-1]=0-t1.a[big-1];
    return t1;
}
BigNum BigNum::operator*(const BigNum &T)const //两个大数之间的相乘
{
    BigNum ret;
    int i,j,up;
    int temp,temp1;
    for(i=0;i<len;i++)
    {
        up=0;
        for(j=0;j<T.len;j++)
        {
            temp=a[i]*T.a[j]+ret.a[i+j]+up;
            if(temp>MAXN)
            {
                temp1=temp-temp/(MAXN+1)*(MAXN+1);
                up=temp/(MAXN+1);
                ret.a[i+j]=temp1;
            }
            else
            {
                up=0;
                ret.a[i+j]=temp;
            }
        }
        if(up!=0)
            ret.a[i+j]=up;
    }
    ret.len=i+j;
    while(ret.a[ret.len-1]==0 && ret.len>1)ret.len--;
    return ret;
}
BigNum BigNum::operator/(const int &b)const //大数对一个整数进行相除运算
{
    BigNum ret;
    int i,down=0;
    for(i=len-1;i>=0;i--)
    {
        ret.a[i]=(a[i]+down*(MAXN+1))/b;
        down=a[i]+down*(MAXN+1)-ret.a[i]*b;
    }
    ret.len=len;
    while(ret.a[ret.len-1]==0 && ret.len>1)
        ret.len--;
    return ret;
}
int BigNum::operator%(const int &b)const //大数对一个 int类型的变量进行取模
{
    int i,d=0;
    for(i=len-1;i>=0;i--)
        d=((d*(MAXN+1))%b+a[i])%b;
    return d;
}
BigNum BigNum::operator^(const int &n)const //大数的n次方运算
{
    BigNum t,ret(1);
    int i;
    if(n<0)exit(-1);
    if(n==0)return 1;
    if(n==1)return *this;
    int m=n;
    while(m>1)
    {
        t=*this;
        for(i=1;(i<<1)<=m;i<<=1)
            t=t*t;
        m-=i;
        ret=ret*t;
        if(m==1)ret=ret*(*this);
    }
    return ret;
}
bool BigNum::operator>(const BigNum &T)const //大数和另一个大数的大小比较
{
    int ln;
    if(len>T.len)return true;
    else if(len==T.len)
    {
        ln=len-1;
        while(a[ln]==T.a[ln]&&ln>=0)
            ln--;
        if(ln>=0 && a[ln]>T.a[ln])
            return true;
        else
            return false;
    }
    else
        return false;
}
bool BigNum::operator>(const int &t)const //大数和一个int类型的变量的大小比较
{
    BigNum b(t);
    return *this>b;
}
void BigNum::print() //输出大数
{
    int i;
    printf("%d",a[len-1]);
    for(i=len-2;i>=0;i--)
        printf("%04d",a[i]);
    printf("\n");
}
ll Scan() {
    int ch, flag = 0;
    ll res = 0;
    if((ch = getchar()) == '-')
        flag = 1;
    else if(ch >= '0' && ch <= '9')
        res = ch - '0';
    while ((ch = getchar()) >= '0' && ch <= '9' )
        res = res * 10 + ch - '0';
    return flag ? -res : res;
}

BigNum a, b, c, d,e;

int main() {
    ll t, n;
    cin>>t;
    //t = Scan();
    for (ll cas = 1; cas <= t; cas++) {
        a=Scan();
        a = BigNum(a);
        b = BigNum(8);
        c = BigNum(7);
        d = BigNum(1);
        a = a * a * b - a * c + d;
        printf("Case #%lld: ", cas);
        a.print();
    }
    return 0;
}

该题链接:

点俺T^T  欢迎交流~  [email protected]

时间: 2024-11-10 07:28:18

c++大数板子的相关文章

hdu 5666 Segment 俄罗斯乘法或者套大数板子

Segment Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem Description Silen August does not like to talk with others.She like to find some interesting problems. Today she finds an interesting problem.She find

POJ 1737 Connected Graph (大数+递推)

题目链接: http://poj.org/problem?id=1737 题意: 求 \(n\) 个点的无向简单连通图的个数.\((n<=50)\) 题解: 这题你甚至能OEIS. http://oeis.org/A001187 但不支持这样做.TAT 间接做. 总方案数减去不合法方案. 因为\(n\)个点的完全图有 \(C(n,2)={n(n-1) \over 2}\) 条边,显然就有 \(2^{C(n,2)}\) 种子图,即枚举每条边是否选择. 设$ f[i]$ 表示每个点都和点 \(1\)

第八届福建省大学生程序设计竞赛-重现赛

第八届福建省大学生程序设计竞赛-重现赛 B   计算几何 题意:问两个三角形是相交.包含还是相离. tags:套板子..求出相交的面积,再判断一下 /* 多边形相交面积模板 */ #define maxn 510 const double eps=1E-8; int sig(double d){ return(d>eps)-(d<-eps); } struct Point{ double x,y; Point(){} Point(double x,double y):x(x),y(y){} b

ICPC Asia Nanning 2017

比赛地址:https://www.jisuanke.com/contest/3107?view=challenges A.签到,大概就是输出几个字符串 #include <bits/stdc++.h> using namespace std; int t,n; int main(){ scanf("%d",&t); while(t--){ scanf("%d",&n); for(int i=1;i<=n;++i) printf(&q

T96070 试验密码(思维)

最佳的方案一定是1 2 3 4 5...n,这样的话试出正确答案的期望是: 1/n*(1+2+3+...+n) =1/n*(1+n)*n/2 =(n+1)/2 由于要求向上取整,输出(n+2)/2即可 但是爆longlong,于是上了大数板子 代码: #include <bits/stdc++.h> #define MAXN 9999 #define MAXSIZE 1000 #define DLEN 4 using namespace std; class BigNum { private:

hdu_1042(模拟大数乘法)

计算n! 1 #include<cstring> 2 #include<cstdio> 3 using namespace std; 4 int num[50000]; 5 int main() 6 { 7 int n; 8 while(~scanf("%d",&n)) 9 { 10 memset(num,0,sizeof(num)); 11 int len = 1; 12 num[1] = 1; 13 for(int i = 2; i <= n;

[HNOI 2016]大数

Description 题库链接 给你一个长度为 \(n\) ,可含前导零的大数,以及一个质数 \(p\) . \(m\) 次询问,每次询问你一个大数的子区间 \([l,r]\) ,求出子区间中有多少个子串为 \(p\) 的倍数. \(1\leq n,m\leq 100000\) Solution 记 \(a_i\) 为大数第 \(i\) 位上的数值. 注意到题目是要求 \[\sum_{i=l}^r\sum_{j=i}^r\left[\sum_{k=i}^ja_k\cdot 10^{j-k}\e

[ZJOI2013]K大数查询——整体二分

新科技:整体二分 它能解决的典型问题:带修改区间第\(k\)大 大概的做法是这样的:我们一次二分一个值\(mid\),然后依据操作的答案与\(mid\)的大小关系把操作分别划到两边,然后递归下去.也就是相当于二分的是所有询问的答案 感觉其实这个跟在权值线段树上二分一个效果,只是用离线的方式替代掉了那一层权值线段树而已 计算可得复杂度为\(O(nlog^2n)\)(由主定理,\(T(n)=2T(n/2)+O(nlogn)=O(nlog^2n)\)) 拿线段树或者树状数组维护都行 板子题是这一道K大

最短的计算大数乘法的c程序

#include <stdio.h> char s[99],t[99]; int m,n; void r(int i,int c) { int j=0,k=i; while(k)c+=s[j++]*t[k---1]; if(i)r(i-1,c/10); printf("%d",c%10); } void main() { gets(s);gets(t); while(s[n])s[n++]-=48; while(t[m])t[m++]-=48; r(m+n-1,0); }