Brackets(区间dp)

Brackets

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8017   Accepted: 4257

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

Stanford Local 2004

【题目大意】

最大括号匹配

【思路】

区间dp 枚举长度

【code】

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
char s[101];
int dp[101][101];
int main()
{
    while(gets(s)!=NULL)
    {
        if(s[0]==‘e‘)break;
        memset(dp,0,sizeof(dp));
        int len=strlen(s);
        for(int i=1;i<=len;i++)
        for(int j=0,k=i;k<=len;j++,k++)
        {
            if(s[j]==‘(‘&&s[k]==‘)‘||s[j]==‘[‘&&s[k]==‘]‘)
            dp[j][k]=dp[j+1][k-1]+2;
            for(int p=j;p<=k;p++)
            dp[j][k]=max(dp[j][k],dp[j][p]+dp[p+1][k]);
        }
        printf("%d\n",dp[0][len-1]);
    }
    return 0;
}

  

时间: 2024-12-19 17:43:08

Brackets(区间dp)的相关文章

codeforces 149D - Coloring Brackets (区间dp)

题目大意: 给出一组合法的括号. 括号要么不涂颜色,要么就涂上红色或者绿色. 匹配的括号只能有一个有颜色. 两个相邻的括号不能有相同的颜色. 思路分析: 因为是一个合法的括号序列. 所以每个括号与之匹配的位置是一定的. 那么就可以将这个序列分成两个区间. (L - match[L] )  (match[L]+1, R) 用递归先处理小区间,再转移大区间. 因为条件的限制,所以记录区间的同时,还要记录区间端点的颜色. 然后就是一个递归的过程. #include <cstdio> #include

POJ 2955 Brackets (区间DP)

题意:给定一个序列,问你最多有多少个合法的括号. 析:区间DP,dp[i][j] 表示在 第 i 到 第 j 区间内最多有多少个合法的括号. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <ios

CF149D. Coloring Brackets[区间DP !]

不知道为什么居中了,先把代码放这 #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> using namespace std; const int N=705,MOD=1e9+7; char s[N]; long long n,f[N][N][5][5]; int st[N],top=0,m[N]; void match(){ for(int i=1;i<=

POJ 2955 Brackets (区间dp 括号匹配)

Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3951   Accepted: 2078 Description We give the following inductive definition of a "regular brackets" sequence: the empty sequence is a regular brackets sequence, if s is a reg

POJ 2955:Brackets 区间DP基础题

Brackets 题目链接: http://poj.org/problem?id=2955 题意: 给出一个只由'('.')'.'['.']'构成的字符串,字符间可以匹配,左边的 '(' 可以与右边的 ')' 匹配,左边的 '[' 可以与右边的 ']' 匹配 两种匹配不能交叉,可以包含,如 [(])只算2个匹配而[()]算四个匹配,求最大匹配数. 题解: 设dp[i][j]为区间 i 到 j (设len为区间长度,j=i+len)内可以得到的最大匹配数,则有两种情况: ① j 不与区间[i,j]

poj2955 Brackets (区间dp)

Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3571   Accepted: 1847 Description We give the following inductive definition of a "regular brackets" sequence: the empty sequence is a regular brackets sequence, if s is a reg

poj 2955 Brackets(区间DP求最长匹配子串)

思路:假设要求区间[i,j]的最长匹配字串,它必然可以从[i,j-1]转移而来,有可能是s[j]与s[i]发生"关系"(匹配或不匹配),一直到s[j-1],若不发生"关系",即s[j]跟自己发生"关系",用for循环枚举所有的可能,取最大值. 代码: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; char

codeferces 149D Coloring Brackets 区间dp

http://codeforces.com/problemset/problem/149/D 题目大致意思是给你一串字符串,只有小括号,并且已经符合括号匹配规则,现在要给这些括号涂色,给出一些涂色规则,求涂色的方案数. 1: 括号要么不被涂色,要么被涂成蓝色,要么被涂成红色. 2:两个相互匹配的括号有且仅有一个被涂色. 3:相邻两个括号不可以有相同颜色. 这里当然也是想到对区 [l, r] 间进行dp,但是这里对颜色有依赖关系,所以还需要记入 l 和 r 颜色的状态,一开始打算只用一维记录两个点

POJ2955:Brackets(区间DP)

1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #define pf(x) printf("%d\n", x) 6 #define CL(x, y) memset(x, y, sizeof(x)) 7 #define max(a, b) (a > b ? a : b) 8 using namespace s

POJ 2955 Brackets 区间DP 最大括号匹配

http://blog.csdn.net/libin56842/article/details/9673239 http://www.cnblogs.com/ACMan/archive/2012/08/09/2630497.html http://blog.csdn.net/chaiyuan414/article/details/5448699 #include <iostream> #include <string> #include <cstring> #inclu