图论---The Captain

B-The Captain

给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用。

Input

第一行包含一个正整数n(2<=n<=200000),表示点数。
接下来n行,每行包含两个整数x[i],yi,依次表示每个点的坐标。

Output

一个整数,即最小费用。

Sample Input

5
2 2
1 1
4 5
7 1
6 7

Sample Output

2
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define N 200010
#define inf 0x3f3f3f3f
#define pa pair<long long, int>
using namespace std;
int head[N];
long long dis[N];
int n, num;
bool vis[N];
struct node
{
    int x, y, z;
}a[N];
priority_queue<pa, vector<pa>, greater<pa> > q;
bool cmp_x(node x,node y)
{
    return x.x < y.x;
}
bool cmp_y(node x,node y)
{
    return x.y < y.y;
}
struct edge
{
    int u, v, next;
    long long w;
    edge(){next=-1;}
}ed[4*N];
void build(int u,int v,int w)
{
    num++;
    ed[num].w=w;
    ed[num].v=v;
    ed[num].next=head[u];
    head[u]=num;
}
void SPFA()
{
    memset(vis, 0, sizeof(vis));
    for(int i=1; i<=n; i++) dis[i]=inf;
    dis[1]=0;
    q.push(make_pair(0, 1));
    while(!q.empty())
    {
        int u=q.top().second;
        q.pop();
        if(vis[u])continue;
        vis[u]=1;
        for(int i=head[u]; i!=-1; i=ed[i].next)
        {
            int v=ed[i].v;
            if(dis[v]>dis[u]+ed[i].w)
            {
                dis[v]=dis[u]+ed[i].w;
                q.push(make_pair(dis[v], v));
            }
        }
    }
}
int main()
{
    memset(head, -1, sizeof(head));
    scanf("%d", &n);
    for (int i=1; i<=n; i++)
    {
        scanf("%d%d", &a[i].x, &a[i].y);
        a[i].z=i;
    }
    sort(a+1, a+n+1, cmp_x);
    for(int i=1; i<n; i++)
    {
        build(a[i].z, a[i+1].z, a[i+1].x-a[i].x),
        build(a[i+1].z, a[i].z, a[i+1].x-a[i].x);
    }
    sort(a+1, a+n+1, cmp_y);
    for(int i=1; i<n; i++)
    {
        build(a[i].z, a[i+1].z, a[i+1].y-a[i].y),
        build(a[i+1].z, a[i].z, a[i+1].y-a[i].y);
    }
    SPFA();
    printf("%lld\n", dis[n]);
    return 0;
}
  • 我们不难发现,如果有一个点P在M,N两个点之间,从M到N得代价一定大于从P到M再从P到N得代价。
  • 换言之,我们的边应该建在横纵坐标相邻的点之间。
  • 为此目的,我们把点们按照横坐标从小到大排序,再把点们按照纵坐标从小到大排序。然后直接按排好的顺序两辆排序。
  • 要用Dijkstra的话。。。除非你开堆优化的Dijkstra,否则是过不了的。

原文地址:https://www.cnblogs.com/orange-233/p/12320950.html

时间: 2024-10-16 22:43:42

图论---The Captain的相关文章

第九节 图论和搜索

1. 图论算法(用BFS,DFS) 拓扑排序 克隆图 找连通块 六度问题 2.BFS 队列实现:    树中的BFS与图中的BFS有什么不同?树中没有环,图中有环需要一个set来记录搜索过的节点: 应用:图的遍历,最短路径 3 搜索   搜索题的套路比较固定.

图论(A*算法,K短路) :POJ 2449 Remmarguts&#39; Date

Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 25216   Accepted: 6882 Description "Good man never makes girls wait or breaks an appointment!" said the mandarin duck father. Softly touching his little ducks' head, h

ACM 图论入门

①图论基础 图由点和边组成 记顶点集合为V 边集合为E的图为G=(V,E) 图可分为有向图和无向图.如表示朋友关系的图为无向图,表示点之间大小关系的图为有向图. 边也可以带有权值,带有权值称为有权图,不带有权值称为 无权图. 一.关于无向图 任意两点之间都有路径的图叫做连通图,顶点连接的边数称为这个点的度. 没有环的连通图就是树,没有环的非连通图就是森林. 一棵树的边数=顶点数-1.反之 边数=顶点数-1的连通图就是树. 二.关于有向图 以一个点为起点的边数称作这个点的出度,以一个点为终点的边数

Codeforces 444A DZY Loves Physics(图论)

题目链接:Codeforces 444A DZY Loves Physics 题目大意:给出一张图,图中的每个节点,每条边都有一个权值,现在有从中挑出一张子图,要求子图联通,并且被选中的任意两点,如果存在边,则一定要被选中.问说点的权值和/边的权值和最大是多少. 解题思路:是图论中的一个结论,最多两个节点,所以枚举两条边就可以了.我简单的推了一下,2个点的情况肯定比3个点的优. 假设有3个点a,b,c,权值分别为A,B,C 现a-b,b-c边的权值分别为u,v 那么对于两点的情况有A+Bu,B+

图论算法之DFS与BFS

概述(总) DFS是算法中图论部分中最基本的算法之一.对于算法入门者而言,这是一个必须掌握的基本算法.它的算法思想可以运用在很多地方,利用它可以解决很多实际问题,但是深入掌握其原理是我们灵活运用它的关键所在. 含义特点 DFS即深度优先搜索,有点类似广度优先搜索,也是对一个连通图进行遍历的算法.它的思想是从一个顶点V0开始,沿着一条路一直走到底,如果发现不能到达目标解,那就返回到上一个节点,然后从另一条路开始走到底,这种尽量往深处走的概念即是深度优先的概念. 由于用到递归,当节点特别多且深度很大

codevs——1019 集合论与图论

1019 集合论与图论 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 集合论与图论对于小松来说是比数字逻辑轻松,比数据结构难的一门专业必修课.虽然小松在高中的时候已经自学过了离散数学中的图论,组合,群论等知识.但对于集合论,小松还是比较陌生的.集合论的好多东西也涉及到了图论的知识. 在第四讲的学习中,小松学到了“有序对”这么一个概念,即用<x, y>表示有序对x和y.要注意的是有序对<x, y>

关于图论的若干巴拉巴拉

最近课堂上正在讲图论 先安利MIT课程:http://open.163.com/special/opencourse/algorithms.html 因为本人对图论的概念并不是很清楚,所以还是整理一下吧. 1.图论的基本概念 几种常见的图的分类: 类型 边 允许多重边 允许环 简单图 无向 否 否 多重图 无向 是 否 伪图 无向 是 是 有向图 有向 否 是 有向多重图 有向 是 是 完全图:n个顶点上的完全图是在每对不同顶点之间都恰有一条边的简单图. 二分图:若把简单图G的顶点集合分为两个不

cdoj1580 简单图论问题

地址:http://acm.uestc.edu.cn/#/problem/show/1580 题目: 简单图论问题 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit Status 给出一个无向图,该图由nn个点和mm条边组成,每个点和每条边都有一个权值.对于该图的任意一个子图,我们定义A是该子图的点权和,B是该子图的边权和,C=A/b=AB是该子图的powerpow

SDUT 3361 数据结构实验之图论四:迷宫探索

数据结构实验之图论四:迷宫探索 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Discuss Problem Description 有一个地下迷宫,它的通道都是直的,而通道所有交叉点(包括通道的端点)上都有一盏灯和一个开关:请问如何从某个起点开始在迷宫中点亮所有的灯并回到起点? Input 连续T组数据输入,每组数据第一行给出三个正整数,分别表示地下迷宫的结点数N(1 < N <= 1000).边数M(M <= 30