poj 1845 Sumdiv(求逆元)

Sumdiv

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 17590   Accepted: 4421

Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8.

The natural divisors of 8 are: 1,2,4,8. Their sum is 15.

15 modulo 9901 is 15 (that should be output).

Source

Romania OI 2002

题意:给定两个正整数,求的所有因子和对9901取余后的值。

分析:很容易知道,先把分解得到,那么得到,那么

的所有因子和的表达式如下

所以我们有两种做法。第一种做法是二分求等比数列之和。

代码:

#include <iostream>
#include <string.h>
#include <stdio.h>

using namespace std;
typedef long long LL;
const int N = 10005;
const int MOD = 9901;

bool prime[N];
int p[N];
int cnt;

void isprime()
{
    cnt = 0;
    memset(prime,true,sizeof(prime));
    for(int i=2; i<N; i++)
    {
        if(prime[i])
        {
            p[cnt++] = i;
            for(int j=i+i; j<N; j+=i)
                prime[j] = false;
        }
    }
}

LL power(LL a,LL b)
{
    LL ans = 1;
    a %= MOD;
    while(b)
    {
        if(b & 1)
        {
            ans = ans * a % MOD;
            b--;
        }
        b >>= 1;
        a = a * a % MOD;
    }
    return ans;
}

LL sum(LL a,LL n)
{
    if(n == 0) return 1;
    LL t = sum(a,(n-1)/2);
    if(n & 1)
    {
        LL cur = power(a,(n+1)/2);
        t = (t + t % MOD * cur % MOD) % MOD;
    }
    else
    {
        LL cur = power(a,(n+1)/2);
        t = (t + t % MOD * cur % MOD) % MOD;
        t = (t + power(a,n)) % MOD;
    }
    return t;
}

void Solve(LL A,LL B)
{
    LL ans = 1;
    for(int i=0; p[i]*p[i] <= A; i++)
    {
        if(A % p[i] == 0)
        {
            int num = 0;
            while(A % p[i] == 0)
            {
                num++;
                A /= p[i];
            }
            ans *= sum(p[i],num*B) % MOD;
            ans %= MOD;
        }
    }
    if(A > 1)
    {
        ans *= sum(A,B) % MOD;
        ans %= MOD;
    }
    cout<<ans<<endl;
}

int main()
{
    LL A,B;
    isprime();
    while(cin>>A>>B)
        Solve(A,B);
    return 0;
}

第二种方法就是用等比数列求和公式,但是要用逆元。用如下公式即可

因为可能会很大,超过int范围,所以在快速幂时要二分乘法。

代码:

#include <iostream>
#include <string.h>
#include <stdio.h>

using namespace std;
typedef long long LL;
const int N = 10005;
const int MOD = 9901;

bool prime[N];
int p[N];
int cnt;

void isprime()
{
    cnt = 0;
    memset(prime,true,sizeof(prime));
    for(int i=2; i<N; i++)
    {
        if(prime[i])
        {
            p[cnt++] = i;
            for(int j=i+i; j<N; j+=i)
                prime[j] = false;
        }
    }
}

LL multi(LL a,LL b,LL m)
{
    LL ans = 0;
    a %= m;
    while(b)
    {
        if(b & 1)
        {
            ans = (ans + a) % m;
            b--;
        }
        b >>= 1;
        a = (a + a) % m;
    }
    return ans;
}

LL quick_mod(LL a,LL b,LL m)
{
    LL ans = 1;
    a %= m;
    while(b)
    {
        if(b & 1)
        {
            ans = multi(ans,a,m);
            b--;
        }
        b >>= 1;
        a = multi(a,a,m);
    }
    return ans;
}

void Solve(LL A,LL B)
{
    LL ans = 1;
    for(int i=0; p[i]*p[i] <= A; i++)
    {
        if(A % p[i] == 0)
        {
            int num = 0;
            while(A % p[i] == 0)
            {
                num++;
                A /= p[i];
            }
            LL M = (p[i] - 1) * MOD;
            ans *= (quick_mod(p[i],num*B+1,M) + M - 1) / (p[i] - 1);
            ans %= MOD;
        }
    }
    if(A > 1)
    {
        LL M = MOD * (A - 1);
        ans *= (quick_mod(A,B+1,M) + M - 1) / (A - 1);
        ans %= MOD;
    }
    cout<<ans<<endl;
}

int main()
{
    LL A,B;
    isprime();
    while(cin>>A>>B)
        Solve(A,B);
    return 0;
}

其实有些题需要用到的所有逆元,这里为奇质数。那么如果用快速幂求时间复杂度为

如果对于一个1000000级别的素数,这样做的时间复杂度是很高了。实际上有的算法,有一个递推式如下

它的推导过程如下,设,那么

对上式两边同时除,进一步得到

再把替换掉,最终得到

初始化,这样就可以通过递推法求出模奇素数的所有逆元了。

另外的所有逆元值对应中所有的数,比如,那么对应的逆元是

时间: 2024-10-12 23:49:21

poj 1845 Sumdiv(求逆元)的相关文章

POJ 1845 Sumdiv(逆元的应用)

传送门 Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 19009 Accepted: 4773 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 99

[ACM] POJ 1845 Sumdiv(求A的B次方的所有因子的和,一大堆数学公式...,可做模板)

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13792   Accepted: 3399 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 99

POJ 1845 Sumdiv 【逆元】

题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和  用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: (1)若n为奇数,一共有偶数项,则:      1 + p + p^2 + p^3 +...+ p^n = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))      = (1 + p + p^2 +...+ p^(n/

poj 1845 Sumdiv (算术基本定理求一个数因子和)

求一个数的所有因子和可以用算术基本定理,下面是它的两个重要应用: (1)一个大于1的正整数N,如果它的标准分解式为: N=(P1^a1)*(P2^a2)......(Pn^an) 那么它的正因数个数为(1+a1)(1+a2).....(1+an). (2) 它的全体正因数之和为d(N)=(1+p1+...p1^an)(1+p2+...p2^a2)...(1+pn+...+pn^an) 和求一个数正因数个数的方法类似. 可以先打表出sqrt(n)以内的所有素数(当然也可以不打表),因为n的素因数中

POJ 1845 Sumdiv【同余模运算+递归求等比数列和+快速幂运算】

快速幂运算在第一次训练时候就已经遇到过,这里不赘述 同余模运算也很简单,这里也不说了,无非是(a+b)%m (a*b)%m 把m弄到里面变成(a%m+b%m)%m   (a%m*b%m)%m 今天学的最重要的还是递归二分求等比数列 题目大意是给出A和B,求A^B的约数和 解这个题,首先,对A进行素因子分解得到 (PI(pi^ai))^B 然后我们有约数和公式: 对A=PI(p1^k1) A的所有因子之和为S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^

POJ 1845 - Sumdiv ( 数论 + 唯一分解定理 + 快速幂取模 )

POJ 1845 - Sumdiv ( 数论 + 唯一分解定理 + 快速幂取模 ) 这是一道数论的好题,需要较好的数学基础 题意: 给定A,B,求A^B的所有因数的和,再MOD 9901 分析: 这里用到了数论当中相当一部分知识 a. 唯一分解定理 任何一个整数都可以分解为若干个素数的幂的乘积的形式 A = ( p1 ^ q1 + p2 ^ q2 + ..... + pn ^ qn ) p为素数 A^B = ( p1 ^ (q1*B) + p2 ^ (q2*B) + ..... + pn ^ (

POJ 1845 Sumdiv

题目链接:http://poj.org/problem?id=1845 题意:给出A,B两个整数(0 <= A,B <= 50000000),输出A^B(A的B次,不是异或)的所有因子和模9901: Sample Input 2 3 Sample Output 15 Hint 2^3 = 8. The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 15 modulo 9901 is 15 (that should be output)

poj 1845 Sumdiv (同余定理,快速幂取余)

链接:poj 1845 题意:求A^B的所有因子的和对9901取余后的值 如:2^3=8,8的因子有 1,2,4,8,所有和为15,取余后也是15 应用定理主要有三个: (1)整数的唯一分解定理: 任意正整数都有且只有一种方式写出其素因子的乘积表达式. A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数 (2)约数和公式: 对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 有A的所有因子之和为 S = 

POJ 1845 Sumdiv (快速分解因式+快速幂取模)

题目地址:POJ 1845 转载自:http://blog.csdn.net/lyy289065406/article/details/6648539 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题思路: 要求有较强 数学思维 的题 应用定理主要有三个: 要求有较强 数学思维 的题 应用定理主要有三个: (1)   整数的唯一分解定理: 任意正整数都有且只有一种方式写出其素因子的乘积表达式. A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^