Linux SPI总线和设备驱动架构之三:SPI控制器驱动

通过第一篇文章,我们已经知道,整个SPI驱动架构可以分为协议驱动、通用接口层和控制器驱动三大部分。其中,控制器驱动负责最底层的数据收发工作,为了完成数据的收发工作,控制器驱动需要完成以下这些功能:
1.    申请必要的硬件资源,例如中断,DMA通道,DMA内存缓冲区等等;
2.    配置SPI控制器的工作模式和参数,使之可以和相应的设备进行正确的数据交换工作;

3.    向通用接口层提供接口,使得上层的协议驱动可以通过通用接口层访问控制器驱动;

4.    配合通用接口层,完成数据消息队列的排队和处理,直到消息队列变空为止;

/*****************************************************************************************************/
声明:本博内容均由http://blog.csdn.net/droidphone原创,转载请注明出处,谢谢!
/*****************************************************************************************************/

定义控制器设备



SPI控制器遵循linux的设备模型框架,所以,一个SPI控制器在代码中对应一个device结构,对于嵌入式系统,我们通常把SPI控制器作为一个平台设备来对待,所以,对于我们来说,只要在板级的代码中为SPI控制器定义一个platform_device结构即可。下面以Samsung的SOC芯片:S3C6410,做为例子,看看如何定义这个platform_device。以下的代码来自:/arch/arm/plat-samsung/devs.c中:

static struct resource s3c64xx_spi0_resource[] = {
	[0] = DEFINE_RES_MEM(S3C_PA_SPI0, SZ_256),
	[1] = DEFINE_RES_DMA(DMACH_SPI0_TX),
	[2] = DEFINE_RES_DMA(DMACH_SPI0_RX),
	[3] = DEFINE_RES_IRQ(IRQ_SPI0),
};

struct platform_device s3c64xx_device_spi0 = {
	.name		= "s3c6410-spi",
	.id		= 0,
	.num_resources	= ARRAY_SIZE(s3c64xx_spi0_resource),
	.resource	= s3c64xx_spi0_resource,
	.dev = {
		.dma_mask		= &samsung_device_dma_mask,
		.coherent_dma_mask	= DMA_BIT_MASK(32),
	},
};

由此可见,在这个platform_device中,我们定义了控制器所需的寄存器地址、DMA通道资源和IRQ编号,设备的名字定义为:s3c64xx-spi,这个名字用于后续和相应的控制器驱动相匹配。在machine的初始化代码中,我们需要注册这个代表SPI控制器的平台设备,另外,也会通过s3c64xx_spi0_set_platdata函数设置平台相关的参数供后续的控制器驱动使用:

static struct platform_device *crag6410_devices[] __initdata = {
        ......
        &s3c64xx_device_spi0,
        ......
};

static void __init xxxx_machine_init(void)
{

        s3c64xx_spi0_set_platdata(NULL, 0, 2);
        //注册平台设备
        platform_add_devices(crag6410_devices, ARRAY_SIZE(crag6410_devices));
}

s3c64xx_spi0_set_platdata函数的定义如下:

void __init s3c64xx_spi0_set_platdata(int (*cfg_gpio)(void), int src_clk_nr,
						int num_cs)
{
	struct s3c64xx_spi_info pd;
	......
	pd.num_cs = num_cs;
	pd.src_clk_nr = src_clk_nr;
	pd.cfg_gpio = (cfg_gpio) ? cfg_gpio : s3c64xx_spi0_cfg_gpio;
        ......
	s3c_set_platdata(&pd, sizeof(pd), &s3c64xx_device_spi0);
}

上述函数主要是指定了控制器使用到的gpio配置、片选引脚个数和时钟配置等信息。这些信息在后面的控制器驱动中要使用到。

注册SPI控制器的platform_driver



上一节中,我们把SPI控制器注册为一个platform_device,相应地,对应的驱动就应该是一个平台驱动:platform_driver,它们通过platform bus进行相互匹配。以下的代码来自:/drivers/spi/spi-s3c64xx.c

static struct platform_driver s3c64xx_spi_driver = {
        .driver = {
                .name   = "s3c64xx-spi",
                .owner = THIS_MODULE,
                .pm = &s3c64xx_spi_pm,
                .of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
        },
        .remove = s3c64xx_spi_remove,
        .id_table = s3c64xx_spi_driver_ids,
};
MODULE_ALIAS("platform:s3c64xx-spi");

static int __init s3c64xx_spi_init(void)
{
        return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
}
subsys_initcall(s3c64xx_spi_init);

显然,系统初始化阶段(subsys_initcall阶段),通过s3c64xx_spi_init(),注册了一个平台驱动,该驱动的名字正好也是:s3c64xx-spi,自然地,平台总线会把它和上一节定义的platform_device匹配上,并且触发probe回调被调用(就是s3c64xx_spi_probe函数)。当然,这里的匹配是通过id_table字段完成的:

static struct platform_device_id s3c64xx_spi_driver_ids[] = {
        {
                .name           = "s3c2443-spi",
                .driver_data    = (kernel_ulong_t)&s3c2443_spi_port_config,
        }, {
                .name           = "s3c6410-spi",
                .driver_data    = (kernel_ulong_t)&s3c6410_spi_port_config,
        },
        ......
        { },
};

注册spi_master



在linux设备模型看来,代表SPI控制器的是第一节所定义的platform_device结构,但是对于SPI通用接口层来说,代表控制器的是spi_master结构,关于spi_master结构的描述,请参看第二篇文章:Linux SPI总线和设备驱动架构之二:SPI通用接口层。我们知道,设备和驱动匹配上后,驱动的probe回调函数就会被调用,而probe回调函数正是对驱动程序和设备进行初始化的合适时机,本例中,对应的probe回调是:s3c64xx_spi_probe:

static int s3c64xx_spi_probe(struct platform_device *pdev)
{
        ......

        /* 分配一个spi_master结构 */
        master = spi_alloc_master(&pdev->dev,
                                sizeof(struct s3c64xx_spi_driver_data));
        ......

        platform_set_drvdata(pdev, master);
        ......
        master->dev.of_node = pdev->dev.of_node;
        master->bus_num = sdd->port_id;
        master->setup = s3c64xx_spi_setup;
        master->cleanup = s3c64xx_spi_cleanup;
        master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
        master->transfer_one_message = s3c64xx_spi_transfer_one_message;
        master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
        master->num_chipselect = sci->num_cs;
        master->dma_alignment = 8;
        master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
                                        SPI_BPW_MASK(8);
        /* the spi->mode bits understood by this driver: */
        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
        master->auto_runtime_pm = true;

        ......
        /* 向通用接口层注册spi_master结构 */
        if (spi_register_master(master)) {
                dev_err(&pdev->dev, "cannot register SPI master\n");
                ret = -EBUSY;
                goto err3;
        }

        ......
}

上述函数,除了完成必要的硬件资源初始化工作以外,最重要的工作就是通过spi_alloc_master函数分配了一个spi_master结构,初始化该结构,最终通过spi_register_master函数完成了对控制器的注册工作。从代码中我们也可以看出,spi_master结构中的几个重要的回调函数已经被赋值,这几个回调函数由通用接口层在合适的时机被调用,以便完成控制器和设备之间的数据交换工作。

实现spi_master结构的回调函数



事实上,SPI控制器驱动程序的主要工作,就是要实现spi_master结构中的几个回调函数,其它的工作逻辑,均由通用接口层帮我们完成,通用接口层会在适当的时机调用这几个回调函数,这里我只是介绍一下各个回调函数的作用,具体的实现例子,请各位自行阅读代码树中各个平台的例子(代码位于:/drivers/spi/)。

int (*setup)(struct spi_device *spi)

当协议驱动希望修改控制器的工作模式或参数时,会调用通用接口层提供的API:spi_setup(),该API函数最后会调用setup回调函数来完成设置工作。

int (*transfer)(struct spi_device *spi, struct spi_message *mesg)

目前已经可以不用我们自己实现该回调函数,初始化时直接设为NULL即可,目前的通用接口层已经实现了消息队列化,注册spi_master时,通用接口层会提供实现好的通用函数。现在只有一些老的驱动还在使用该回调方式,新的驱动应该停止使用该回调函数,而是应该使用队列化的transfer_one_message回调。需要注意的是,我们只能选择其中一种方式,设置了transfer_one_message回调,就不能设置transfer回调,反之亦然。

void (*cleanup)(struct spi_device *spi)

当一个SPI从设备(spi_device结构)被释放时,该回调函数会被调用,以便释放该从设备所占用的硬件资源。

int (*prepare_transfer_hardware)(struct spi_master *master)

int (*unprepare_transfer_hardware)(struct spi_master *master)

这两个回调函数用于在发起一个数据传送过程前和后,给控制器驱动一个机会,申请或释放某些必要的硬件资源,例如DMA资源和内存资源等等。

int (*prepare_message)(struct spi_master *master, struct spi_message *message)

int (*unprepare_message)(struct spi_master *master, struct spi_message *message)

这两个回调函数也是用于在发起一个数据传送过程前和后,给控制器驱动一个机会,对message进行必要的预处理或后处理,比如根据message需要交换数据的从设备,设定控制器的正确工作时钟、字长和工作模式等。

int (*transfer_one_message)(struct spi_master *master, struct spi_message *mesg)

当通用接口层发现master的队列中有消息需要传送时,会调用该回调函数,所以该函数是真正完成一个消息传送的工作函数,当传送工作完成时,应该调用spi_finalize_current_message函数,以便通知通用接口层,发起队列中的下一个消息的传送工作。

时间: 2024-11-10 11:39:58

Linux SPI总线和设备驱动架构之三:SPI控制器驱动的相关文章

Linux SPI总线和设备驱动架构之四:SPI数据传输的队列化

我们知道,SPI数据传输可以有两种方式:同步方式和异步方式.所谓同步方式是指数据传输的发起者必须等待本次传输的结束,期间不能做其它事情,用代码来解释就是,调用传输的函数后,直到数据传输完成,函数才会返回.而异步方式则正好相反,数据传输的发起者无需等待传输的结束,数据传输期间还可以做其它事情,用代码来解释就是,调用传输的函数后,函数会立刻返回而不用等待数据传输完成,我们只需设置一个回调函数,传输完成后,该回调函数会被调用以通知发起者数据传送已经完成.同步方式简单易用,很适合处理那些少量数据的单次传

Linux SPI总线和设备驱动架构之一:系统概述【转】

转自:http://blog.csdn.net/droidphone/article/details/23367051/ 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[-] 硬件结构 工作时序 软件架构 SPI控制器驱动程序 SPI通用接口封装层 SPI协议驱动程序 SPI通用设备驱动程序 SPI是"Serial Peripheral Interface" 的缩写,是一种四线制的同步串行通信接口,用来连接微控制器.传感器.存储设备,SPI设备分为主设备和从设备两种,

Linux SPI总线和设备驱动架构之一:系统概述

SPI是"Serial Peripheral Interface" 的缩写,是一种四线制的同步串行通信接口,用来连接微控制器.传感器.存储设备,SPI设备分为主设备和从设备两种,用于通信和控制的四根线分别是: CS    片选信号 SCK  时钟信号 MISO  主设备的数据输入.从设备的数据输出脚 MOSI  主设备的数据输出.从设备的数据输入脚 因为在大多数情况下,CPU或SOC一侧通常都是工作在主设备模式,所以,目前的Linux内核版本中,只实现了主模式的驱动框架. /*****

让天堂的归天堂,让尘土的归尘土——谈Linux的总线、设备、驱动模型

公元1951年5月15日的国会听证上,美国陆军五星上将麦克阿瑟建议把朝鲜战争扩大至中国,布莱德利随后发言:"如果我们把战争扩大到共产党中国,那么我们会被卷入到一场错误的时间,错误的地点同错误的对手打的一场错误的战争中." 写代码,适用于同样的原则,那就是把正确的代码放到正确的位置而不是相反.同样的一个代码,可以出现在多个可能的位置,它究竟应该出现在哪里,是软件架构设计的结果,说白了一切都是为了高内核和低耦合. 1.   陷入绝境 下面我们设想一个名字叫做ABC的简单的网卡,它需要接在一

Linux SPI总线和设备驱动架构之二:SPI通用接口层

通过上一篇文章的介绍,我们知道,SPI通用接口层用于把具体SPI设备的协议驱动和SPI控制器驱动联接在一起,通用接口层除了为协议驱动和控制器驱动提供一系列的标准接口API,同时还为这些接口API定义了相应的数据结构,这些数据结构一部分是SPI设备.SPI协议驱动和SPI控制器的数据抽象,一部分是为了协助数据传输而定义的数据结构.另外,通用接口层还负责SPI系统与Linux设备模型相关的初始化工作.本章的我们就通过这些数据结构和API的讨论来对整个通用接口层进行深入的了解. /**********

RT-thread 设备驱动组件之SPI设备

本文主要介绍RT-thread中的SPI设备驱动,涉及到的文件主要有:spi_dev.c,spi_core.c,spi.h,spi_hard.c,spi_hard.h. 一.SPI设备框架 先来看spi.h中的一些数据结构: ** * SPI message structure */ struct rt_spi_message { const void *send_buf; void *recv_buf; rt_size_t length; struct rt_spi_message *next

USB 驱动架构浅析

1.USB简介 USB,即Universal Serial Bus(通用串行总线)的缩写,是一个外部总线标准,用于规范电脑与外部设备的连接和通讯.USB接口支持设备的即插即用和热插拔功能.USB是在1994年底由英特尔.康柏.IBM等多家公司联合提出的.USB版本经历了多年的发展,现已经发展为3.1版本,成为当今PC中的标准扩展接口.当前主要采用USB2.0和USB3.0接口,USB各版本间能很好的兼容. USB采用四线电缆,其中两根是用来传送数据的串行通道,另两根为设备提供电源,对于任何已经成

SPI总线

一.SPI总线简介 串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola公司推出的一种同步串行接口.SPI 用 于CPU与各种外围器件进行全双工.同步串行通讯.它只需四条线就可以完成MCU与各种外围器件的通讯,这四条线是:串行时钟线(CSK).主机输入/从 机输出数据线(MISO).主机输出/从机输入数据线(MOSI).低电平有效从机选择线CS.当SPI工作时,在移位寄存器中的数据逐位从输出引脚 (MOSI)输出(高位在前),同时从输入引脚(

SPI总线协议分析

一.概述 SPI, Serial Perripheral Interface, 串行外围设备接口, 是 Motorola 公司推出的一种同步串行接口技术. SPI 总线在物理上是通过接在外围设备微控制器(PICmicro) 上面的微处理控制单元 (MCU) 上叫作同步串行端口(Synchronous Serial Port) 的模块(Module)来实现的, 它允许 MCU 以全双工的同步串行方式, 与各种外围设备进行高速数据通信. SPI 主要应用在 EEPROM, Flash, 实时时钟(R