About Dynamic Programming

Main Point: Dynamic Programming = Divide + Remember + Guess

1. Divide

the key is to find the subproblem

2. Remember

use a data structure to write down what has been done

3. Guess

when don‘t know what to do, just guess what next step can be

Problems:

  1. Maximum Value Contiguous Subsequence. Given a sequence of n real numbers A(1) ... A(n), determine a contiguous subsequence A(i) ... A(j) for which the sum of elements in the subsequence is maximized.
  2. Making Change. You are given n types of coin denominations of values v(1) < v(2) < ... < v(n) (all integers). Assume v(1) = 1, so you can always make change for any amount of money C. Give an algorithm which makes change for an amount of money C with as few coins as possible. [on problem set 4]
  3. Longest Increasing Subsequence. Given a sequence of n real numbers A(1) ... A(n), determine a subsequence (not necessarily contiguous) of maximum length in which the values in the subsequence form a strictly increasing sequence. [on problem set 4]
  4. Box Stacking. You are given a set of n types of rectangular 3-D boxes, where the i^th box has height h(i), width w(i) and depth d(i) (all real numbers). You want to create a stack of boxes which is as tall as possible, but you can only stack a box on top of another box if the dimensions of the 2-D base of the lower box are each strictly larger than those of the 2-D base of the higher box. Of course, you can rotate a box so that any side functions as its base. It is also allowable to use multiple instances of the same type of box.
  5. Building Bridges. Consider a 2-D map with a horizontal river passing through its center. There are n cities on the southern bank with x-coordinates a(1) ... a(n) and n cities on the northern bank with x-coordinates b(1) ... b(n). You want to connect as many north-south pairs of cities as possible with bridges such that no two bridges cross. When connecting cities, you can only connect city i on the northern bank to city i on the southern bank. (Note: this problem was incorrectly stated on the paper copies of the handout given in recitation.)
  6. Integer Knapsack Problem (Duplicate Items Forbidden). This is the same problem as the example above, except here it is forbidden to use more than one instance of each type of item.
  7. Balanced Partition. You have a set of n integers each in the range 0 ... K. Partition these integers into two subsets such that you minimize |S1 - S2|, where S1 and S2 denote the sums of the elements in each of the two subsets.
  8. Edit Distance. Given two text strings A of length n and B of length m, you want to transform A into B with a minimum number of operations of the following types: delete a character from A, insert a character into A, or change some character in A into a new character. The minimal number of such operations required to transform A into B is called the edit distance between A and B.
  9. Counting Boolean Parenthesizations. You are given a boolean expression consisting of a string of the symbols ‘true‘, ‘false‘, ‘and‘, ‘or‘, and ‘xor‘. Count the number of ways to parenthesize the expression such that it will evaluate to true. For example, there are 2 ways to parenthesize ‘true and false xor true‘ such that it evaluates to true.
  10. Optimal Strategy for a Game. Consider a row of n coins of values v(1) ... v(n), where n is even. We play a game against an opponent by alternating turns. In each turn, a player selects either the first or last coin from the row, removes it from the row permanently, and receives the value of the coin. Determine the maximum possible amount of money we can definitely win if we move first:

Reference:

1. https://people.cs.clemson.edu/~bcdean/dp_practice/

2. http://blog.gainlo.co/index.php/2015/10/22/a-step-by-step-guide-to-dynamic-programming/

时间: 2024-11-13 07:57:44

About Dynamic Programming的相关文章

Dynamic Programming

We began our study of algorithmic techniques with greedy algorithms, which in some sense form the most natural approach to algorithm design. Faced with a new computational problem, we've seen that it's not hard to propose multiple possible greedy alg

Dynamic Programming | Set 3 (Longest Increasing Subsequence)

在 Dynamic Programming | Set 1 (Overlapping Subproblems Property) 和 Dynamic Programming | Set 2 (Optimal Substructure Property) 中我们已经讨论了重叠子问题和最优子结构性质,现在我们来看一个可以使用动态规划来解决的问题:最长上升子序列(Longest Increasing Subsequence(LIS)). 最长上升子序列问题,致力于在一个给定的序列中找到一个最长的子序列

Dynamic Programming | Set 4 (Longest Common Subsequence)

首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", "bdf", "aeg", '"acefg"等都是"abcdefg"的子序列.因此,一个长度为n的序列拥有2^n中可能的子序列(序列中的每一个元素只有选或者不选两种可能,因此是2^n). Example: LCS for inp

HDU 4972 A simple dynamic programming problem(推理)

HDU 4972 A simple dynamic programming problem 题目链接 推理,会发现只有前一个和当前一个分数为(1, 2)或(2, 1)的时候,会有两种加分方法,其他情况最多就一种情况,所以只要统计(1, 2),(2, 1)的个数,最后判断分差是否为0,如果不为0,那么可能是正或负,那就是两倍 代码: #include <cstdio> #include <cstring> const int N = 100005; int t, n, a[N]; i

hdu 4972 A simple dynamic programming problem(高效)

题目链接:hdu 4972 A simple dynamic programming problem 题目大意:两支球队进行篮球比赛,每进一次球后更新比分牌,比分牌的计数方法是记录两队比分差的绝对值,每次进球的分可能是1,2,3分.给定比赛中的计分情况,问说最后比分有多少种情况. 解题思路:分类讨论: 相邻计分为1-2或者2-1的时候,会对应有两种的的分情况 相邻计分之差大于3或者说相等并且不等于1的话,为非法输入 其他情况下,不会造成新的比分情况产生 对于最后一次比分差为0的情况,就没有谁赢谁

2017 UESTC Training for Dynamic Programming

2017 UESTC Training for Dynamic Programming A    思维, 或 dp, 很有意思 方法1: 构造法:蛇形安排赛程表算法复杂度:O(N^2)将1-N排成两竖列,每一轮同一行的为对手保持1的位置不变,其他位置按顺(逆)时方向依次旋转1    6          1    2          1    3          1    4          1    5      2    5          3    6          4   

动态规划 Dynamic Programming

March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: 自由转载-非商用-非衍生-保持署名|Creative Commons BY-NC-ND 3.0 ,转载请注明作者及出处. 前言 本文翻译自TopCoder上的一篇文章: Dynamic Programming: From novice to advanced ,并非严格逐字逐句翻译,其中加入了自己的

HDU-4972 A simple dynamic programming problem

http://acm.hdu.edu.cn/showproblem.php?pid=4972 ++和+1还是有区别的,不可大意. A simple dynamic programming problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 307    Accepted Submission(s): 117 Problem D

hdu 4972 A simple dynamic programming problem (转化 乱搞 思维题) 2014多校10

题目链接 题意:给定一个数组记录两队之间分差,只记分差,不记谁高谁低,问最终有多少种比分的可能性 分析: 类似cf的题目,比赛的时候都没想出来,简直笨到极点..... 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <cmath> 6 #include <vector> 7 #include &

hdu 4223 Dynamic Programming?

Dynamic Programming? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem Description Dynamic Programming, short for DP, is the favorite of iSea. It is a method for solving complex problems by breaking them down