memcache(二)事件模型源码分析

memcache事件模型

  在memcache中,作者为了专注于缓存的设计,使用了libevent来开发事件模型。memcache的时间模型同nginx的类似,拥有一个主进行(master)以及多个工作者线程(woker)。

流程图

在memcache中,是先对工作者线程进行初始化并启动,然后才会创建启动主线程。

工作者线程

初始化

memcache对工作者线程进行初始化,参数分别为线程数量以及`main_base`,

/* start up worker threads if MT mode */
thread_init(settings.num_threads, main_base);

/*
 * Initializes the thread subsystem, creating various worker threads.
 *
 * nthreads  Number of worker event handler threads to spawn
 * main_base Event base for main thread
 */
void thread_init(int nthreads, struct event_base *main_base) {
    int         i;
    int         power;

    pthread_mutex_init(&cache_lock, NULL);
    pthread_mutex_init(&stats_lock, NULL);

    pthread_mutex_init(&init_lock, NULL);
    pthread_cond_init(&init_cond, NULL);

    pthread_mutex_init(&cqi_freelist_lock, NULL);
    cqi_freelist = NULL;

    /* Want a wide lock table, but don‘t waste memory */
    if (nthreads < 3) {
        power = 10;
    } else if (nthreads < 4) {
        power = 11;
    } else if (nthreads < 5) {
        power = 12;
    } else {
        /* 8192 buckets, and central locks don‘t scale much past 5 threads */
        power = 13;
    }

    item_lock_count = hashsize(power);
    item_lock_hashpower = power;

    item_locks = calloc(item_lock_count, sizeof(pthread_mutex_t));
    if (! item_locks) {
        perror("Can‘t allocate item locks");
        exit(1);
    }
    for (i = 0; i < item_lock_count; i++) {
        pthread_mutex_init(&item_locks[i], NULL);
    }
    pthread_key_create(&item_lock_type_key, NULL);
    pthread_mutex_init(&item_global_lock, NULL);

    threads = calloc(nthreads, sizeof(LIBEVENT_THREAD));
    if (! threads) {
        perror("Can‘t allocate thread descriptors");
        exit(1);
    }

    dispatcher_thread.base = main_base;
    dispatcher_thread.thread_id = pthread_self();

    for (i = 0; i < nthreads; i++) {
        int fds[2];
        if (pipe(fds)) {
            perror("Can‘t create notify pipe");
            exit(1);
        }

        threads[i].notify_receive_fd = fds[0];
        threads[i].notify_send_fd = fds[1];

        setup_thread(&threads[i]);
        /* Reserve three fds for the libevent base, and two for the pipe */
        stats.reserved_fds += 5;
    }

    /* Create threads after we‘ve done all the libevent setup. */
    for (i = 0; i < nthreads; i++) {
        create_worker(worker_libevent, &threads[i]);
    }

    /* Wait for all the threads to set themselves up before returning. */
    pthread_mutex_lock(&init_lock);
    wait_for_thread_registration(nthreads);
    pthread_mutex_unlock(&init_lock);
}

thread_init源码

在memcache中为了避免多线程共享资源的使用使用了很多锁,这里对锁不做介绍。

线程的结构体

typedef struct {
    pthread_t thread_id;        /* unique ID of this thread 线程ID*/
    struct event_base *base;    /* libevent handle this thread uses libevent事件*/
    struct event notify_event;  /* listen event for notify pipe 注册事件*/
    int notify_receive_fd;      /* receiving end of notify pipe 管道中接收端*/
    int notify_send_fd;         /* sending end of notify pipe 管道中发送端*/
    struct thread_stats stats;  /* Stats generated by this thread 线程状态*/
    struct conn_queue *new_conn_queue; /* queue of new connections to handle 消息队列*/
    cache_t *suffix_cache;      /* suffix cache */
    uint8_t item_lock_type;     /* use fine-grained or global item lock */
} LIBEVENT_THREAD;

初始化工作者线程

for (i = 0; i < nthreads; i++) {
        int fds[2];
        /* 创建管道 */
        if (pipe(fds)) {
            perror("Can‘t create notify pipe");
            exit(1);
        }

        /* 设置线程管道的读写入口 */
        threads[i].notify_receive_fd = fds[0];
        threads[i].notify_send_fd = fds[1];

        /*  设置线程属性 */
        setup_thread(&threads[i]);
        /* Reserve three fds for the libevent base, and two for the pipe */
        stats.reserved_fds += 5;
    }

设置线程属性

/*
 * Set up a thread‘s information.
 */
static void setup_thread(LIBEVENT_THREAD *me) {
    me->base = event_init(); //初始化线程事件
    if (! me->base) {
        fprintf(stderr, "Can‘t allocate event base\n");
        exit(1);
    }

    /* 初始化监听事件 */
    /* Listen for notifications from other threads */
    event_set(&me->notify_event, me->notify_receive_fd,
              EV_READ | EV_PERSIST, thread_libevent_process, me);
    /* 把事件绑定到线程事件 */
    event_base_set(me->base, &me->notify_event);

    /* 注册事件到监听状态 */
    if (event_add(&me->notify_event, 0) == -1) {
        fprintf(stderr, "Can‘t monitor libevent notify pipe\n");
        exit(1);
    }
    ...
}

READ回调函数

/*
 * Processes an incoming "handle a new connection" item. This is called when
 * input arrives on the libevent wakeup pipe.
 */
static void thread_libevent_process(int fd, short which, void *arg) {
    ...

    /* 从管道读取消息 */
    if (read(fd, buf, 1) != 1)
        if (settings.verbose > 0)
            fprintf(stderr, "Can‘t read from libevent pipe\n");

    item = cq_pop(me->new_conn_queue); //读取连接

    ...
}    

启动工作者线程

/* Create threads after we‘ve done all the libevent setup. */
for (i = 0; i < nthreads; i++) {
     create_worker(worker_libevent, &threads[i]);
}

`create_woker`函数创建工作者线程,

/*
 * Creates a worker thread.
 */
static void create_worker(void *(*func)(void *), void *arg) {
    pthread_t       thread;
    pthread_attr_t  attr;
    int             ret;

    pthread_attr_init(&attr);

    if ((ret = pthread_create(&thread, &attr, func, arg)) != 0) {
        fprintf(stderr, "Can‘t create thread: %s\n",
                strerror(ret));
        exit(1);
    }
}

`worker_libevent`函数进入线程循环监听状态,

/*
 * Worker thread: main event loop
 */
static void *worker_libevent(void *arg) {
    LIBEVENT_THREAD *me = arg;

    /* Any per-thread setup can happen here; thread_init() will block until
     * all threads have finished initializing.
     */

    /* set an indexable thread-specific memory item for the lock type.
     * this could be unnecessary if we pass the conn *c struct through
     * all item_lock calls...
     */
    me->item_lock_type = ITEM_LOCK_GRANULAR;
    pthread_setspecific(item_lock_type_key, &me->item_lock_type);

    register_thread_initialized();

    event_base_loop(me->base, 0);
    return NULL;
}

主线程

初始化

static struct event_base* mian_base;

/* initialize main thread libevent instance */
main_base = event_init();

在`memcache.c`的主函数中,使用`libevent`的事件初始化函数来初始化`main_base`。

初始化socket

这里只介绍tcp连接,其中使用`server_sockets`来调用`server_socket`来初始化连接。

if (settings.port && server_sockets(settings.port, tcp_transport,  portnumber_file)) {
            vperror("failed to listzhefen on TCP port %d", settings.port);
            exit(EX_OSERR);
}
static int server_sockets(int port, enum network_transport transport,
                          FILE *portnumber_file) {
    if (settings.inter == NULL) {
        return server_socket(settings.inter, port, transport, portnumber_file);
    }
    ...
}

而在`server_socket`中完成了socket的初始化、绑定等操作。

/**
 * Create a socket and bind it to a specific port number
 * @param interface the interface to bind to
 * @param port the port number to bind to
 * @param transport the transport protocol (TCP / UDP)
 * @param portnumber_file A filepointer to write the port numbers to
 *        when they are successfully added to the list of ports we
 *        listen on.
 */
static int server_socket(const char *interface,
                         int port,
                         enum network_transport transport,
                         FILE *portnumber_file) {
    int sfd;
    struct linger ling = {0, 0};
    struct addrinfo *ai;
    struct addrinfo *next;
    struct addrinfo hints = { .ai_flags = AI_PASSIVE,
                              .ai_family = AF_UNSPEC };
    char port_buf[NI_MAXSERV];
    int error;
    int success = 0;
    int flags =1;

    hints.ai_socktype = IS_UDP(transport) ? SOCK_DGRAM : SOCK_STREAM;

    if (port == -1) {
        port = 0;
    }
    snprintf(port_buf, sizeof(port_buf), "%d", port);
    error= getaddrinfo(interface, port_buf, &hints, &ai);
    if (error != 0) {
        if (error != EAI_SYSTEM)
          fprintf(stderr, "getaddrinfo(): %s\n", gai_strerror(error));
        else
          perror("getaddrinfo()");
        return 1;
    }

    for (next= ai; next; next= next->ai_next) {
        conn *listen_conn_add;
        if ((sfd = new_socket(next)) == -1) {
            /* getaddrinfo can return "junk" addresses,
             * we make sure at least one works before erroring.
             */
            if (errno == EMFILE) {
                /* ...unless we‘re out of fds */
                perror("server_socket");
                exit(EX_OSERR);
            }
            continue;
        }

#ifdef IPV6_V6ONLY
        if (next->ai_family == AF_INET6) {
            error = setsockopt(sfd, IPPROTO_IPV6, IPV6_V6ONLY, (char *) &flags, sizeof(flags));
            if (error != 0) {
                perror("setsockopt");
                close(sfd);
                continue;
            }
        }
#endif

        setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, (void *)&flags, sizeof(flags));
        if (IS_UDP(transport)) {
            maximize_sndbuf(sfd);
        } else {
            error = setsockopt(sfd, SOL_SOCKET, SO_KEEPALIVE, (void *)&flags, sizeof(flags));
            if (error != 0)
                perror("setsockopt");

            error = setsockopt(sfd, SOL_SOCKET, SO_LINGER, (void *)&ling, sizeof(ling));
            if (error != 0)
                perror("setsockopt");

            error = setsockopt(sfd, IPPROTO_TCP, TCP_NODELAY, (void *)&flags, sizeof(flags));
            if (error != 0)
                perror("setsockopt");
        }

        if (bind(sfd, next->ai_addr, next->ai_addrlen) == -1) {
            if (errno != EADDRINUSE) {
                perror("bind()");
                close(sfd);
                freeaddrinfo(ai);
                return 1;
            }
            close(sfd);
            continue;
        } else {
            success++;
            if (!IS_UDP(transport) && listen(sfd, settings.backlog) == -1) {
                perror("listen()");
                close(sfd);
                freeaddrinfo(ai);
                return 1;
            }
            if (portnumber_file != NULL &&
                (next->ai_addr->sa_family == AF_INET ||
                 next->ai_addr->sa_family == AF_INET6)) {
                union {
                    struct sockaddr_in in;
                    struct sockaddr_in6 in6;
                } my_sockaddr;
                socklen_t len = sizeof(my_sockaddr);
                if (getsockname(sfd, (struct sockaddr*)&my_sockaddr, &len)==0) {
                    if (next->ai_addr->sa_family == AF_INET) {
                        fprintf(portnumber_file, "%s INET: %u\n",
                                IS_UDP(transport) ? "UDP" : "TCP",
                                ntohs(my_sockaddr.in.sin_port));
                    } else {
                        fprintf(portnumber_file, "%s INET6: %u\n",
                                IS_UDP(transport) ? "UDP" : "TCP",
                                ntohs(my_sockaddr.in6.sin6_port));
                    }
                }
            }
        }

        if (IS_UDP(transport)) {
            int c;

            for (c = 0; c < settings.num_threads_per_udp; c++) {
                /* Allocate one UDP file descriptor per worker thread;
                 * this allows "stats conns" to separately list multiple
                 * parallel UDP requests in progress.
                 *
                 * The dispatch code round-robins new connection requests
                 * among threads, so this is guaranteed to assign one
                 * FD to each thread.
                 */
                int per_thread_fd = c ? dup(sfd) : sfd;
                dispatch_conn_new(per_thread_fd, conn_read,
                                  EV_READ | EV_PERSIST,
                                  UDP_READ_BUFFER_SIZE, transport);
            }
        } else {
            if (!(listen_conn_add = conn_new(sfd, conn_listening,
                                             EV_READ | EV_PERSIST, 1,
                                             transport, main_base))) {
                fprintf(stderr, "failed to create listening connection\n");
                exit(EXIT_FAILURE);
            }
            listen_conn_add->next = listen_conn;
            listen_conn = listen_conn_add;
        }
    }

    freeaddrinfo(ai);

    /* Return zero iff we detected no errors in starting up connections */
    return success == 0;
}

server_socket源码

主线程事件

在主线程中通过`conn_new`函数来建立主线程和工作者线程之间的关系。

/* 设置线程事件 */
event_set(&c->event, sfd, event_flags, event_handler, (void *)c);
event_base_set(base, &c->event);
c->ev_flags = event_flags;

/* 注册事件到监听 */
if (event_add(&c->event, 0) == -1) {
    perror("event_add");
    return NULL;
}

事件处理

上面中设置了事件的回调函数`event_handler`,而在`event_handler`中,主要调用了`driver_machine`函数。

driver_machine看名字就知道,想发动机一样的函数,那么该函数主要是处理各种事件以及相应的处理方法。

这里只简要介绍一个函数调用`dispatch_conn_new`。

void dispatch_conn_new(int sfd, enum conn_states init_state, int event_flags,
                       int read_buffer_size, enum network_transport transport) {
    CQ_ITEM *item = cqi_new();
    char buf[1];
    if (item == NULL) {
        close(sfd);
        /* given that malloc failed this may also fail, but let‘s try */
        fprintf(stderr, "Failed to allocate memory for connection object\n");
        return ;
    }

    int tid = (last_thread + 1) % settings.num_threads;

    LIBEVENT_THREAD *thread = threads + tid; //循环获取工作者线程

    last_thread = tid;

    item->sfd = sfd;
    item->init_state = init_state;
    item->event_flags = event_flags;
    item->read_buffer_size = read_buffer_size;
    item->transport = transport;

    cq_push(thread->new_conn_queue, item); //连接加入懂啊队列

    MEMCACHED_CONN_DISPATCH(sfd, thread->thread_id);
    buf[0] = ‘c‘;
    if (write(thread->notify_send_fd, buf, 1) != 1) {//向管道写入消息
        perror("Writing to thread notify pipe");
    }
}
时间: 2024-10-09 13:07:20

memcache(二)事件模型源码分析的相关文章

Java I/O系列(二)ByteArrayInputStream源码分析及理解

定义 继承了InputStream,数据源是内置的byte数组buf,那read ()方法的使命(读取一个个字节出来),在ByteArrayInputStream就是简单的通过定向的取buf元素实现的 核心源码理解 源码: 1 public ByteArrayInputStream(byte buf[], int offset, int length) { 2 this.buf = buf; 3 this.pos = offset; 4 this.count = Math.min(offset

Java 序列化和反序列化(二)Serializable 源码分析 - 1

目录 Java 序列化和反序列化(二)Serializable 源码分析 - 1 1. Java 序列化接口 Java 序列化和反序列化(二)Serializable 源码分析 - 1 在上一篇文章中讲解了一下 Serializable 的大致用法,本节重点关注 Java 序列化的实现,围绕 ObjectOutputStream#writeObject 方法展开. 1. Java 序列化接口 Java 为了方便开发人员将 Java 对象进行序列化及反序列化提供了一套方便的 API 来支持.其中包

跟厂长学PHP内核(二):源码分析的环境与工具

本文主要介绍分析源码的方式,其中包含环境的搭建.分析工具的安装以及源码调试的基本操作. 一.工具清单 PHP7.0.12 GDB CLion 二.源码下载及安装 $ wget http://php.net/distributions/php-7.0.12.tar.gz $ tar zxvf php-7.0.12.tar.gz $ cd php-7.0.12/ $ ./configure --prefix=/usr/local/php7 --enable-debug --enable-fpm $

Backbone事件模块源码分析

事件模块Backbone.Events在Backbone中占有十分重要的位置,其他模块Model,Collection,View所有事件模块都依赖它.通过继承Events的方法来实现事件的管理,可以说,它是Backbone的核心组成部分. 此外,事件模块的所有方法都挂在了全局的Backbone上,如果你的代码中需要用到自定义事件(实现观察者模式),可以直接使用它. 所以很有必要一起来研究下Backbone.Events的源码,一来学习Backbone事件模块优秀的写法和思想,二来可以更好的灵活使

Django中CBV(Class Base Views)模型源码分析

在view文件中编写一个类,并配置好路由 class Test(View): def get(self, request, *args, **kwargs): return HttpResponse('cbv_get') def post(self, request, *args, **kwargs): return HttpResponse('cbv_post') url(r'test/',views.Test.as_view()), 通过as_view()进入查看源码 实际上views.Te

DataMatrix二维条码源码分析检测识别图像位置

发布时间:2014-10-31 DataMatrix的代码结构和QR码基本相同: 其中Detector的功能还是从原始图像中找出符号码的部分,并且进行透视转换纠正扭曲. 其解码流程与QR码差不多,关键在于怎么从原始图像中取出真实的符号图像.在上文中说过,George Wolberg写的Digital Image Warping一书中PerspectiveTransform方法可以建立起两个四边形之间的映射关系.然后就通过每一点的映射关系将原图中可能不规则的符号图形纠正为规则的矩形. 在QR码中D

[dpdk] 熟悉SDK与初步使用 (二)(skeleton源码分析)

接续前节:[dpdk] 熟悉SDK与初步使用 (一)(qemu搭建实验环境) 程序逻辑: 运行参数: 关键API: 入口函数: int rte_eal_init(int argc, char **argv) 内存池函数: rte_pktmbuf_pool_create.  它是函数 rte_mempool_create 的一个封装. struct rte_mempool * rte_pktmbuf_pool_create(const char *name, unsigned n, unsigne

二)CodeIgniter源码分析之CodeIgniter.php

<?php if ( ! defined('BASEPATH')) exit('No direct script access allowed'); /** * 上面: * 这个BASEPATH,就是在入口文件(index.php)里面定义的那个BASEPATH- * 如果没有定义BASEPATH,那么直接退出,下面程序都不执行.其实除了入口文件index.php开头没有这句话之外,所有文件都会有这句话 * 也就是说,所有文件都不能单独运行,一定是index.php在运行过程中把这些文件通 *

十二)CodeIgniter源码分析之Model.php

1 <?php if ( ! defined('BASEPATH')) exit('No direct script access allowed'); 2 /** 3 * CodeIgniter Model Class 4 */ 5 class CI_Model { 6 7 /** 8 * Constructor 9 */ 10 function __construct() 11 { 12 log_message('debug', "Model Class Initialized&quo