A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent
nodes‘ numbers.
Output Specification:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components
in the graph.
本来想暴力解决,暴力半天也没找着头绪,然后看到了大神的逻辑
从任意节点出发进行遍历,得到的最深的节点一定是所求的根节点集合的一部分;两次遍历结果的并集为所求的根节点集合。
#include <stdio.h> #include <stdlib.h> #include <vector> #include <set> using namespace std; #define N 10001 vector<int> G[N]; int father[N]; set<int> root; int maxH=0; set<int> temp,result; void DFS (int now,int height,int pre); int Block(int n); int Find (int a); void Union (int a,int b); void Init (int n); int main () { int n,i; scanf("%d",&n); Init(n); int start,end; for( i=0;i<n-1;i++) { scanf("%d %d",&start,&end); G[start].push_back(end); G[end].push_back(start); Union(start,end); } ////////////////// int num=Block(n); if( num>1) { printf("Error: %d components\n",num); return 0; } DFS(1,1,-1); result=temp; set<int>::iterator it=result.begin(); set<int>::iterator its=temp.begin(); DFS(*it,1,-1); for( ;its!=temp.end();its++) result.insert(*its); for( it=result.begin();it!=result.end();it++) printf("%d\n",*it); system("pause"); return 0; } void DFS (int now,int height,int pre) { if( height>maxH) { temp.clear(); temp.insert(now); maxH=height; } else if( height==maxH) temp.insert(now); for(int i=0;i<G[now].size();i++) if(G[now][i]!=pre) DFS(G[now][i],height+1,now); } int Block(int n) { int i; for( i=1;i<=n;i++) root.insert(Find(i)); return root.size(); } int Find (int a) { while( a!=father[a]) a=father[a]; return a; } void Union (int a,int b) { int fa=Find(a); int fb=Find(b); if( fa!=fb) father[fa]=fb; } void Init (int n) { int i; for( i=1;i<=n;i++) father[i]=i; }