链接:http://acm.hdu.edu.cn/showproblem.php?pid=5323
Solve this interesting problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1470 Accepted Submission(s): 420
Problem Description
Have you learned something about segment tree? If not, don’t worry, I will explain it for you.
Segment Tree is a kind of binary tree, it can be defined as this:
- For each node u in Segment Tree, u has two values: Lu and Ru.
- If Lu=Ru,
u is a leaf node.
- If Lu≠Ru,
u has two children x and y,with Lx=Lu,Rx=?Lu+Ru2?,Ly=?Lu+Ru2?+1,Ry=Ru.
Here is an example of segment tree to do range query of sum.
Given two integers L and R, Your task is to find the minimum non-negative n satisfy that: A Segment Tree with root node‘s value Lroot=0 and Rroot=ncontains
a node u with Lu=L and Ru=R.
Input
The input consists of several test cases.
Each test case contains two integers L and R, as described above.
0≤L≤R≤109
LR?L+1≤2015
Output
For each test, output one line contains one integer. If there is no such n, just output -1.
Sample Input
6 7 10 13 10 11
Sample Output
7 -1 12
题意:告诉你一个线段树有 一个区间 l到r,如果有这个种线段树 问根节点 0-n, n最小是多少。如果没有输出-1
做法:搜索剪枝,主要那个剪枝右边界比较难想 比较重要。
#include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; #define inf 100000000000 typedef long long ll; ll ans; void dfs(ll l,ll r) { if(l<0) return ;//越界 if(l==0) {ans=min(ans,r); return;}//符合要求 取最小值 if(l<(r-l+1)) return ; //l 这个区间 右边空余的长度, r-l+1 是这个区间的长度 //要对称,所以左边空白区间 必须是 这个区间的 某一倍数,可以相等,但是必须要大于等于 当前这个区间。 //用于限制r的增长 ll len=r-l+1; dfs(l-len,r); dfs(l-len-1,r); dfs(l,r+len); if(l!=r) dfs(l,r+len-1); } int main() { ll l,r; while(scanf("%I64d%I64d",&l,&r)!=EOF){ ans=inf; dfs(l,r); if(ans==inf) puts("-1"); else printf("%I64d\n",ans); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。