Hadoop部署 Ubuntu14.04

Hadoop部署 Ubuntu14.04

Hadoop有3种部署方式。

单机模式,伪分布模式,完全分布式(集群,3个节点)。

一、单机模式

1 基础环境

1.1创建hadoop用户组

sudo addgroup hadoop

1.2创建hadoop用户

sudo adduser -ingroup hadoop hadoop

1.3为hadoop用户添加权限

输入:sudo gedit /etc/sudoers

回车,打开sudoers文件

给hadoop用户赋予和root用户同样的权限

1.4用新增加的hadoop用户登录Ubuntu系统

su Hadoop

1.5安装ssh

sudo apt-get install openssh-server

1.6设置免密码登录,生成私钥和公钥

ssh-keygen -t rsa -P ""

此时会在/home/hadoop/.ssh下生成两个文件:id_rsa和id_rsa.pub,前者为私钥,后者为公钥。

下面我们将公钥追加到authorized_keys中,它用户保存所有允许以当前用户身份登录到ssh客户端用户的公钥内容。

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

1.7验证登录ssh

ssh localhost

2 安装部署

2.1 安装Java环境

先去 Oracle下载Linux下的JDK压缩包,我下载的是jdk-7u79-linux64.gz文件,下好后直接解压

tar –zxvf jdk-7u79-linux64.gz

Step1:

# 将解压好的jdk1.7.0_79文件夹用最高权限复制到/usr/lib/jvm目录里

sudo cp -r ~/jdk1.7.0_79/ /usr/lib/jvm/

Step2:

# 配置环境变量

sudo gedit ~/.profile

在末尾加上:

export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_79

然后保存关闭,使用source更新下

$ source ~/.profile

使用env命令察看JAVA_HOME的值

$ env

如果JAVA_HOME=/usr/lib/jvm/jdk1.7.0_79,说明配置成功。

Step3:

# 将系统默认的jdk修改过来

$ sudo update-alternatives --install /usr/bin/java java /usr/lib/jvm/jdk1.7.0_79/bin/java 300

输入sun jdk前的数字就好了

$ sudo update-alternatives --install /usr/bin/javac javac /usr/lib/jvm/jdk1.7.0_79/bin/javac 300

$ sudo update-alternatives --config java

$ sudo update-alternatives --config javac

Step4:

然后再输入java -version,看到如下信息,就说明改成sun的jdk了:

java version "1.7.0_04"

Java(TM) SE Runtime Environment (build 1.7.0_04-b20)

Java HotSpot(TM) Server VM (build 23.0-b21, mixed mode)

2.2 安装hadoop2.6.0

官网下载:

http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-2.6.0/

安装:

解压

sudo tar xzf hadoop-2.6.0.tar.gz

假如我们要把hadoop安装到/usr/local下

拷贝到/usr/local/下,文件夹为hadoop

sudo mv hadoop-2.6.0 /usr/local/hadoop

赋予用户对该文件夹的读写权限

sudo chmod 774 /usr/local/hadoop

配置:

1)配置~/.bashrc

配置该文件前需要知道Java的安装路径,用来设置JAVA_HOME环境变量,可以使用下面命令行查看安装路径

update-alternatives - -config java

执行结果如下:

完整的路径为

/usr/lib/jvm/jdk1.7.0_79/jre/bin/java

我们只取前面的部分 /usr/lib/jvm/jdk1.7.0_79

配置.bashrc文件

sudo gedit ~/.bashrc

该命令会打开该文件的编辑窗口,在文件末尾追加下面内容,然后保存,关闭编辑窗口。

#HADOOP VARIABLES START

export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_79

export HADOOP_INSTALL=/usr/local/hadoop

export PATH=$PATH:$HADOOP_INSTALL/bin

export PATH=$PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

export HADOOP_HDFS_HOME=$HADOOP_INSTALL

export YARN_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/lib/native

export HADOOP_OPTS="-Djava.library.path=$HADOOP_INSTALL/lib"

#HADOOP VARIABLES END

最终结果如下图:

执行下面命,使添加的环境变量生效:

source ~/.bashrc

2)编辑/usr/local/hadoop/etc/hadoop/hadoop-env.sh

执行下面命令,打开该文件的编辑窗口

sudo gedit /usr/local/hadoop/etc/hadoop/hadoop-env.sh

找到JAVA_HOME变量,修改此变量如下

export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_79

修改后的hadoop-env.sh文件如下所示:

2.3 WordCount测试

单机模式安装完成,下面通过执行hadoop自带实例WordCount验证是否安装成功。

/usr/local/hadoop路径下创建input文件夹

mkdir input

拷贝README.txt到input

cp README.txt input

执行WordCount

bin/hadoop jar share/hadoop/mapreduce/sources/hadoop-mapreduce-examples-2.6.0-sources.jar org.apache.hadoop.examples.WordCount input output

执行结果:

[email protected]:/usr/local/hadoop# bin/hadoop jar share/hadoop/mapreduce/sources/hadoop-mapreduce-examples-2.6.0-sources.jar org.apache.hadoop.examples.WordCount input output

/usr/local/hadoop/etc/hadoop/hadoop-env.sh: line 26: export: `jdk1.7.0_79‘: not a valid identifier

15/04/22 17:46:20 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

15/04/22 17:46:20 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id

15/04/22 17:46:20 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=

15/04/22 17:46:20 INFO input.FileInputFormat: Total input paths to process : 1

15/04/22 17:46:20 INFO mapreduce.JobSubmitter: number of splits:1

15/04/22 17:46:21 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local513316183_0001

15/04/22 17:46:21 INFO mapreduce.Job: The url to track the job: http://localhost:8080/

15/04/22 17:46:21 INFO mapreduce.Job: Running job: job_local513316183_0001

15/04/22 17:46:21 INFO mapred.LocalJobRunner: OutputCommitter set in config null

15/04/22 17:46:21 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter

15/04/22 17:46:21 INFO mapred.LocalJobRunner: Waiting for map tasks

15/04/22 17:46:21 INFO mapred.LocalJobRunner: Starting task: attempt_local513316183_0001_m_000000_0

15/04/22 17:46:21 INFO mapred.Task: Using ResourceCalculatorProcessTree : [ ]

15/04/22 17:46:21 INFO mapred.MapTask: Processing split: file:/usr/local/hadoop/input/README.txt:0+1366

15/04/22 17:46:21 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)

15/04/22 17:46:21 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100

15/04/22 17:46:21 INFO mapred.MapTask: soft limit at 83886080

15/04/22 17:46:21 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600

15/04/22 17:46:21 INFO mapred.MapTask: kvstart = 26214396; length = 6553600

15/04/22 17:46:21 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer

15/04/22 17:46:21 INFO mapred.LocalJobRunner:

15/04/22 17:46:21 INFO mapred.MapTask: Starting flush of map output

15/04/22 17:46:21 INFO mapred.MapTask: Spilling map output

15/04/22 17:46:21 INFO mapred.MapTask: bufstart = 0; bufend = 2055; bufvoid = 104857600

15/04/22 17:46:21 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26213684(104854736); length = 713/6553600

15/04/22 17:46:21 INFO mapred.MapTask: Finished spill 0

15/04/22 17:46:21 INFO mapred.Task: Task:attempt_local513316183_0001_m_000000_0 is done. And is in the process of committing

15/04/22 17:46:21 INFO mapred.LocalJobRunner: map

15/04/22 17:46:21 INFO mapred.Task: Task ‘attempt_local513316183_0001_m_000000_0‘ done.

15/04/22 17:46:21 INFO mapred.LocalJobRunner: Finishing task: attempt_local513316183_0001_m_000000_0

15/04/22 17:46:21 INFO mapred.LocalJobRunner: map task executor complete.

15/04/22 17:46:21 INFO mapred.LocalJobRunner: Waiting for reduce tasks

15/04/22 17:46:21 INFO mapred.LocalJobRunner: Starting task: attempt_local513316183_0001_r_000000_0

15/04/22 17:46:21 INFO mapred.Task: Using ResourceCalculatorProcessTree : [ ]

15/04/22 17:46:21 INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: [email protected]

15/04/22 17:46:21 INFO reduce.MergeManagerImpl: MergerManager: memoryLimit=333971456, maxSingleShuffleLimit=83492864, mergeThreshold=220421168, ioSortFactor=10, memToMemMergeOutputsThreshold=

1015/04/22 17:46:21 INFO reduce.EventFetcher: attempt_local513316183_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events

15/04/22 17:46:22 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local513316183_0001_m_000000_0 decomp: 1832 len: 1836 to MEMORY

15/04/22 17:46:22 INFO reduce.InMemoryMapOutput: Read 1832 bytes from map-output for attempt_local513316183_0001_m_000000_0

15/04/22 17:46:22 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 1832, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->1832

15/04/22 17:46:22 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning

15/04/22 17:46:22 INFO mapred.LocalJobRunner: 1 / 1 copied.

15/04/22 17:46:22 INFO reduce.MergeManagerImpl: finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs

15/04/22 17:46:22 INFO mapred.Merger: Merging 1 sorted segments

15/04/22 17:46:22 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 1823 bytes

15/04/22 17:46:22 INFO reduce.MergeManagerImpl: Merged 1 segments, 1832 bytes to disk to satisfy reduce memory limit

15/04/22 17:46:22 INFO reduce.MergeManagerImpl: Merging 1 files, 1836 bytes from disk

15/04/22 17:46:22 INFO reduce.MergeManagerImpl: Merging 0 segments, 0 bytes from memory into reduce

15/04/22 17:46:22 INFO mapred.Merger: Merging 1 sorted segments

15/04/22 17:46:22 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 1823 bytes

15/04/22 17:46:22 INFO mapred.LocalJobRunner: 1 / 1 copied.

15/04/22 17:46:22 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords

15/04/22 17:46:22 INFO mapred.Task: Task:attempt_local513316183_0001_r_000000_0 is done. And is in the process of committing

15/04/22 17:46:22 INFO mapred.LocalJobRunner: 1 / 1 copied.

15/04/22 17:46:22 INFO mapred.Task: Task attempt_local513316183_0001_r_000000_0 is allowed to commit now

15/04/22 17:46:22 INFO output.FileOutputCommitter: Saved output of task ‘attempt_local513316183_0001_r_000000_0‘ to file:/usr/local/hadoop/output/_temporary/0/task_local513316183_0001_r_00000

015/04/22 17:46:22 INFO mapred.LocalJobRunner: reduce > reduce

15/04/22 17:46:22 INFO mapred.Task: Task ‘attempt_local513316183_0001_r_000000_0‘ done.

15/04/22 17:46:22 INFO mapred.LocalJobRunner: Finishing task: attempt_local513316183_0001_r_000000_0

15/04/22 17:46:22 INFO mapred.LocalJobRunner: reduce task executor complete.

15/04/22 17:46:22 INFO mapreduce.Job: Job job_local513316183_0001 running in uber mode : false

15/04/22 17:46:22 INFO mapreduce.Job: map 100% reduce 100%

15/04/22 17:46:22 INFO mapreduce.Job: Job job_local513316183_0001 completed successfully

15/04/22 17:46:22 INFO mapreduce.Job: Counters: 33

File System Counters

FILE: Number of bytes read=547400

FILE: Number of bytes written=1048794

FILE: Number of read operations=0

FILE: Number of large read operations=0

FILE: Number of write operations=0

Map-Reduce Framework

Map input records=31

Map output records=179

Map output bytes=2055

Map output materialized bytes=1836

Input split bytes=104

Combine input records=179

Combine output records=131

Reduce input groups=131

Reduce shuffle bytes=1836

Reduce input records=131

Reduce output records=131

Spilled Records=262

Shuffled Maps =1

Failed Shuffles=0

Merged Map outputs=1

GC time elapsed (ms)=60

CPU time spent (ms)=0

Physical memory (bytes) snapshot=0

Virtual memory (bytes) snapshot=0

Total committed heap usage (bytes)=404750336

Shuffle Errors

BAD_ID=0

CONNECTION=0

IO_ERROR=0

WRONG_LENGTH=0

WRONG_MAP=0

WRONG_REDUCE=0

File Input Format Counters

Bytes Read=1366

File Output Format Counters

Bytes Written=1326

执行 cat output/*,查看字符统计结果

[email protected]:/usr/local/hadoop# cat output/*

(BIS),    1

(ECCN)    1

(TSU)    1

(see    1

5D002.C.1,    1

740.13)    1

<http://www.wassenaar.org/>    1

Administration    1

Apache    1

BEFORE    1

BIS    1

Bureau    1

Commerce,    1

Commodity    1

Control    1

Core    1

Department    1

ENC    1

Exception    1

Export    2

For    1

Foundation    1

Government    1

Hadoop    1

Hadoop,    1

Industry    1

Jetty    1

License    1

Number    1

Regulations,    1

SSL    1

Section    1

Security    1

See    1

Software    2

Technology    1

The    4

This    1

U.S.    1

Unrestricted    1

about    1

algorithms.    1

and    6

and/or    1

another    1

any    1

as    1

asymmetric    1

at:    2

both    1

by    1

check    1

classified    1

code    1

code.    1

concerning    1

country    1

country‘s    1

country,    1

cryptographic    3

currently    1

details    1

distribution    2

eligible    1

encryption    3

exception    1

export    1

following    1

for    3

form    1

from    1

functions    1

has    1

have    1

http://hadoop.apache.org/core/    1

http://wiki.apache.org/hadoop/    1

if    1

import,    2

in    1

included    1

includes    2

information    2

information.    1

is    1

it    1

latest    1

laws,    1

libraries    1

makes    1

manner    1

may    1

more    2

mortbay.org.    1

object    1

of    5

on    2

or    2

our    2

performing    1

permitted.    1

please    2

policies    1

possession,    2

project    1

provides    1

re-export    2

regulations    1

reside    1

restrictions    1

security    1

see    1

software    2

software,    2

software.    2

software:    1

source    1

the    8

this    3

to    2

under    1

use,    2

uses    1

using    2

visit    1

website    1

which    2

wiki,    1

with    1

written    1

you    1

your    1

二、伪分布模式(单节点集群)

在单机模式的基础上进行伪分布模式的部署。

1、配置core-site.xml

/usr/local/hadoop/etc/hadoop/core-site.xml 包含了hadoop启动时的配置信息。

编辑器中打开此文件

sudo vi /usr/local/hadoop/etc/hadoop/core-site.xml

在该文件的<configuration></configuration>之间增加如下内容:

<property>

<name>fs.default.name</name>

<value>hdfs://localhost:9000</value>

</property>

保存、关闭编辑窗口。

最终修改后的文件内容如下:

2、配置yarn-site.xml

/usr/local/hadoop/etc/hadoop/yarn-site.xml包含了MapReduce启动时的配置信息。

编辑器中打开此文件

sudo vi /usr/local/hadoop/etc/hadoop/yarn-site.xml

在该文件的<configuration></configuration>之间增加如下内容:

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle</value>

</property>

<property>

<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>

<value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>

保存、关闭编辑窗口

最终修改后的文件内容如下

3、创建和配置mapred-site.xml

默认情况下,/usr/local/hadoop/etc/hadoop/文件夹下有mapred.xml.template文件,我们要复制该文件,并命名为mapred.xml,该文件用于指定MapReduce使用的框架。

复制并重命名

cd /usr/local/hadoop/etc/hadoop/

cp mapred-site.xml.template mapred-site.xml

编辑器打开此新建文件

sudo vi mapred-site.xml

在该文件的<configuration></configuration>之间增加如下内容:

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

保存、关闭编辑窗口

最终修改后的文件内容如下

4、配置hdfs-site.xml

/usr/local/hadoop/etc/hadoop/hdfs-site.xml用来配置集群中每台主机都可用,指定主机上作为namenode和datanode的目录。

创建文件夹

cd /usr/local/hadoop

mkdir hdfs

mkdir hdfs/name

mkdir hdfs/data

cd hdfs

ls

你也可以在别的路径下创建上图的文件夹,名称也可以与上图不同,但是需要和hdfs-site.xml中的配置一致。

sudo vi /usr/local/hadoop/etc/hadoop/hdfs-site.xml

编辑器打开hdfs-site.xml

在该文件的<configuration></configuration>之间增加如下内容:

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>file:/usr/local/hadoop/hdfs/name</value>

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value>file:/usr/local/hadoop/hdfs/data</value>

</property>

保存、关闭编辑窗口

最终修改后的文件内容如下:

5、格式化hdfs

hdfs namenode -format

只需要执行一次即可,如果在hadoop已经使用后再次执行,会清除掉hdfs上的所有数据。

6、启动Hadoop

经过上文所描述配置和操作后,下面就可以启动这个单节点的集群

执行启动命令:

sbin/start-dfs.sh

出现错误:

[email protected]:/usr/local/hadoop# sbin/start-dfs.sh

15/04/23 14:34:09 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

Starting namenodes on [localhost]

[email protected]‘s password:

localhost: namenode running as process 2296. Stop it first.

[email protected]‘s password:

localhost: datanode running as process 2449. Stop it first.

Starting secondary namenodes [0.0.0.0]

[email protected]‘s password:

0.0.0.0: secondarynamenode running as process 2634. Stop it first.

15/04/23 14:34:35 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

[email protected]:/usr/local/hadoop#

执行该命令时,如果有yes /no提示,输入yes,回车即可。

接下来,执行:

sbin/start-yarn.sh

执行完这两个命令后,Hadoop会启动并运行

执行 jps命令,会看到Hadoop相关的进程:

出现错误:

[email protected]:/usr/local/hadoop# jps

The program ‘jps‘ can be found in the following packages:

* openjdk-7-jdk

* openjdk-6-jdk

Try: apt-get install <selected package>

浏览器打开 http://10.0.15.80:50070/,会看到hdfs管理页面

浏览器打开http://10.0.15.80:8088,会看到hadoop进程管理页面

7、WordCount验证

dfs上创建input目录

bin/hadoop fs -mkdir -p input

把hadoop目录下的README.txt拷贝到dfs新建的input里

hadoop fs -copyFromLocal README.txt input

运行WordCount

hadoop jar share/hadoop/mapreduce/sources/hadoop-mapreduce-examples-2.6.0-sources.jar org.apache.hadoop.examples.WordCount input output

可以看到执行过程

[email protected]:/usr/local/hadoop# hadoop jar share/hadoop/mapreduce/sources/hadoop-mapreduce-examples-2.6.0-sources.jar org.apache.hadoop.examples.WordCount input output

15/04/23 14:53:07 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

15/04/23 14:53:08 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032

15/04/23 14:53:09 INFO input.FileInputFormat: Total input paths to process : 1

15/04/23 14:53:10 INFO mapreduce.JobSubmitter: number of splits:1

15/04/23 14:53:10 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1429770996011_0001

15/04/23 14:53:10 INFO impl.YarnClientImpl: Submitted application application_1429770996011_0001

15/04/23 14:53:10 INFO mapreduce.Job: The url to track the job: http://hadoop1:8088/proxy/application_1429770996011_0001/

15/04/23 14:53:10 INFO mapreduce.Job: Running job: job_1429770996011_0001

15/04/23 14:53:21 INFO mapreduce.Job: Job job_1429770996011_0001 running in uber mode : false

15/04/23 14:53:21 INFO mapreduce.Job: map 0% reduce 0%

15/04/23 14:53:28 INFO mapreduce.Job: map 100% reduce 0%

15/04/23 14:53:37 INFO mapreduce.Job: map 100% reduce 100%

15/04/23 14:53:38 INFO mapreduce.Job: Job job_1429770996011_0001 completed successfully

15/04/23 14:53:38 INFO mapreduce.Job: Counters: 49

File System Counters

FILE: Number of bytes read=1836

FILE: Number of bytes written=215161

FILE: Number of read operations=0

FILE: Number of large read operations=0

FILE: Number of write operations=0

HDFS: Number of bytes read=1479

HDFS: Number of bytes written=1306

HDFS: Number of read operations=6

HDFS: Number of large read operations=0

HDFS: Number of write operations=2

Job Counters

Launched map tasks=1

Launched reduce tasks=1

Data-local map tasks=1

Total time spent by all maps in occupied slots (ms)=4895

Total time spent by all reduces in occupied slots (ms)=6804

Total time spent by all map tasks (ms)=4895

Total time spent by all reduce tasks (ms)=6804

Total vcore-seconds taken by all map tasks=4895

Total vcore-seconds taken by all reduce tasks=6804

Total megabyte-seconds taken by all map tasks=5012480

Total megabyte-seconds taken by all reduce tasks=6967296

Map-Reduce Framework

Map input records=31

Map output records=179

Map output bytes=2055

Map output materialized bytes=1836

Input split bytes=113

Combine input records=179

Combine output records=131

Reduce input groups=131

Reduce shuffle bytes=1836

Reduce input records=131

Reduce output records=131

Spilled Records=262

Shuffled Maps =1

Failed Shuffles=0

Merged Map outputs=1

GC time elapsed (ms)=108

CPU time spent (ms)=1830

Physical memory (bytes) snapshot=424964096

Virtual memory (bytes) snapshot=1383133184

Total committed heap usage (bytes)=276824064

Shuffle Errors

BAD_ID=0

CONNECTION=0

IO_ERROR=0

WRONG_LENGTH=0

WRONG_MAP=0

WRONG_REDUCE=0

File Input Format Counters

Bytes Read=1366

File Output Format Counters

Bytes Written=1306

运行完毕后,查看单词统计结果

hadoop fs -cat output/*

执行结果:

[email protected]:/usr/local/hadoop# hadoop fs -cat output/*

15/04/23 14:54:40 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

(BIS),    1

(ECCN)    1

(TSU)    1

(see    1

5D002.C.1,    1

740.13)    1

<http://www.wassenaar.org/>    1

Administration    1

Apache    1

BEFORE    1

BIS    1

Bureau    1

Commerce,    1

Commodity    1

Control    1

Core    1

Department    1

ENC    1

Exception    1

Export    2

For    1

Foundation    1

Government    1

Hadoop    1

Hadoop,    1

Industry    1

Jetty    1

License    1

Number    1

Regulations,    1

SSL    1

Section    1

Security    1

See    1

Software    2

Technology    1

The    4

This    1

U.S.    1

Unrestricted    1

about    1

algorithms.    1

and    6

and/or    1

another    1

any    1

as    1

asymmetric    1

at:    2

both    1

by    1

check    1

classified    1

code    1

code.    1

concerning    1

country    1

country‘s    1

country,    1

cryptographic    3

currently    1

details    1

distribution    2

eligible    1

encryption    3

exception    1

export    1

following    1

for    3

form    1

from    1

functions    1

has    1

have    1

http://hadoop.apache.org/core/    1

http://wiki.apache.org/hadoop/    1

if    1

import,    2

in    1

included    1

includes    2

information    2

information.    1

is    1

it    1

latest    1

laws,    1

libraries    1

makes    1

manner    1

may    1

more    2

mortbay.org.    1

object    1

of    5

on    2

or    2

our    2

performing    1

permitted.    1

please    2

policies    1

possession,    2

project    1

provides    1

re-export    2

regulations    1

reside    1

restrictions    1

security    1

see    1

software    2

software,    2

software.    2

software:    1

source    1

the    8

this    3

to    2

under    1

use,    2

uses    1

using    2

visit    1

website    1

which    2

wiki,    1

with    1

written    1

you    1

your    1

三、完全分布式(3个节点集群)

集群,必须3个节点。


主机


角色


备注


Hadoop-Master


NameNode,JobTracker

 

Hadoop-Node1


DataNode,TaskTracker

 

Hadoop-Node2


DataNode,TaskTracker

 

参考:

http://jingyan.baidu.com/article/27fa73269c02fe46f9271f45.html

http://www.cnblogs.com/yhason/archive/2013/05/30/3108908.html

http://www.linuxidc.com/Linux/2015-01/112029.htm

时间: 2024-10-01 16:43:31

Hadoop部署 Ubuntu14.04的相关文章

Ubuntu14.04用apt安装CDH5.1.2[Apache Hadoop 2.3.0]

--------------------------------------- 博文作者:迦壹 博客名称:Ubuntu14.04用apt安装CDH5.1.2[Apache Hadoop 2.3.0] 博客地址:http://idoall.org/home.php?mod=space&uid=1&do=blog&id=558 转载声明:可以转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明,谢谢合作! -----------------------------------

企业级docker私有仓库harbor在Ubuntu14.04上的部署与使用

一.harbor简介: 简单的说,Harbor 是一个企业级的 Docker Registry,可以实现 images 的私有存储和日志统计权限控制等功能,并支持创建多项目(Harbor 提出的概念),基于官方 Registry V2 实现的. 二.部署方法: 操作系统:Ubuntu14.04 1.安装docker: #安装插件 sudo apt-get install apt-transport-https ca-certificates #添加GPG key sudo apt-key adv

CEPH Jewel+Ubuntu14.04+Calamari部署之CEPH Jewel集群部署

CEPH简介 CEPH是一种已经震撼了整个存储行业的最热门的软件定义存储技术(SoftwareDefined Storage,SDS).它是要给开源项目,为块存储.文件存储和对象存储提供了统一的软件定义解决方案.CEPH旨在提供一个扩展性强大.性能优越且无单点故障的分布式存储系统.从一开始,CEPH就被设计为能在通用商业硬件上运行,并且支持高度扩展(逼近甚至超过艾字节的数量). <Ceph Cookbook> 一.环境准备 1.Vmware安装Ubuntu14.04共3台(分别是node1.n

ubuntu14.04下nodejs + npm + bower的安装、调试和部署

  1. 简介 本文介绍ubuntu14.04下nodejs+npm+bower的安装.调试和部署 参考文档 https://docs.npmjs.com/getting-started https://github.com/npm/npm/issues/ 另外: Windows nodejs版本https://nodejs.org/download/release/latest/node-v5.5.0-x64.msi Windows下ide可选用WebStorm-10.0.2.exe 2.  

在Ubuntu14.04上OpenStack Juno安装部署

在Ubuntu14.04上OpenStack Juno安装部署 0 安装方式 0.1 安装方式 安装方式 说明 目标 备注 单结点 一台服务器运行所有的nova-xxx组件,同时也驱动虚拟实例. 这种配置只为尝试Nova,或者为了开发目的进行安装.   1控制节点+N个计算节点 一个控制结点运行除nova-compute外的所有nova-services,然后其他compute结点运行nova-compute.所有的计算节点需要和控制节点进行镜像交互,网络交互,控制节点是整个架构的瓶颈. 这种配

在Ubuntu14.04上快速部署OpenStack

对于初学者来说,OpenStack手工部署相当麻烦, 而且需要花较多时间学习.不过我们可以使用部署脚本来安装OpenStack. 网上有一款名叫DevStack的号称最傻瓜的OpenStack部署工具.用了一下觉得的确挺傻瓜的.组件是从github上面直接拉下来,不仅慢不说,连版本兼容都有可能出问题.安装就用了4个小时.想要更改参数更是只能重来.更可恶的是它会使用python setup脚本把一些可能过期的包直接添加到系统的python库里,引发一大堆错误.基本上用DevStack安装失败了可以

ubuntu14.04 server 部署 zookeeper 集群服务器

zookeeper是什么? Apache ZooKeeper 是一个面向分布式应用程序的高性能协调服务器.它使用一个简单的接口暴露公共服务(比如命名和配置管理.同步和组服务),让用户不必从头开始编程.它为实现共识.组管理.领导者选举和到场协议(presence protocol)配备了现成的支持. 下面是我在ubuntu14.04 server中部署 zookeeper集群服务器的经验 zookeeper集群服务器的部署 1.安装jdk 之前安装jdk都是自己手动配置环境,这次为了偷懒就使用了a

Ubuntu14.04安装pycharm用于Python开发环境部署,并且支持pycharm使用中文输入

一.目标 实现在Linux下用pycharm调试工具/Python开发 Linux使用vi/vim工具写Python,缺点:调试不方便,无代码提示.跳转等诸多功能. Windows使用idle/pycharm/eclipse等,环境包安装麻烦.写好的代码往往也得迁移至Linux服务器环境. 解决办法:直接在Linux环境下安装pycharm编译器. 附:about pycharm PyCharm是一种Python IDE,带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调

基于阿里云Ubuntu14.04 64bit部署WordPress博客系统

环境:基于阿里云Ubuntu14.04  64bit服务器系统 1, 安装apache2+mysql5+php5+php5-mysql sudo apt-get install apache2 sudo apt-get install php5 sudo apt-get install mysql-server sudo apt-get install php5-mysql sudo /etc/init.d/apache2 restart 至此重启了apache后应该就已经配置好服务器了,对此先