acdream.Bet(数学推导)

Bet

Time Limit:1000MS     Memory Limit:64000KB     64bit IO Format:%lld & %llu

Submit Status Practice ACdream 1066

Description

Josnch星球是一个赌博之风盛行的星球。

每个人一出生就有一定数额的钱,之后的所有收入只能由赌博获得(OMG,如果RP不好,输光了所有的钱。。。)

假设赌博公司的某场赌博有 个结果,每个结果能获得的赔率比分别是 a[1],a[2]...a[N]

假设现在XXX有 块钱,问他选择怎样的策略才能使得最坏情况下回报最大?

假设 N 个结果中只有一个是有回报的,X块钱必须全部用在这次赌博上,赔率比就是 a[i],假设你在第 i 个结果中投入了 y 块钱,那么你的回报是 y * a[i],所谓策略是你在每个结果上的投入应该是怎么分配。

比如样例 N = 2 的时候,赔率比分别是1, 2,你有1000块钱,那么买 第一个 2000/3,后一个 1000/3,这样最坏情况下你的回报是 666.67 

Input

多组数据。

对于每组数据,一个数 N (2 ≤  N ≤  100)个选择,接下来一行有 N 个数,每个数的范围是 0.01 ~ 100.00 

最后一行是一个数 X (0.01 ≤  X ≤  1000.00),代表你的钱总额。

Output

每个输出一行,最坏情况下的最大收益,保留两位小数。

Sample Input

2
1 2
1000

Sample Output

666.67

同学很有逻辑的解释了一下:为什么当每个回报值相同时(设此时为x),为最坏情况下的最大收益。

假设每个回报值并不完全相等则肯定存在 (>x) 和 (<x)的元素,按照最坏是收益为(<x)的某个元素。

而回报值全为x时,最坏收益为x > (<x)    所以当且仅当上面那个结论。。。。。。。。orz

时间: 2024-10-07 23:35:14

acdream.Bet(数学推导)的相关文章

acdream.18.KIDx&#39;s Triangle(数学推导)

KIDx's Triangle Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) Submit Statistic Next Problem Problem Description One day, KIDx solved a math problem for middle students in seconds! And than he created this problem. N

HDU1719 Friend (数学推导)

friend numbers = 2^x + 3^y -1 1 #include<stdio.h> 2 int main() 3 { 4 __int64 a; 5 while(scanf("%I64d",&a)!=EOF) 6 { 7 if(!a) 8 { 9 printf("NO!\n"); 10 continue; 11 } 12 a+=1; 13 while(a%2==0||a%3==0) 14 { 15 if(a%2==0) a/=2;

HDU 5073 Galaxy(Anshan 2014)(数学推导,贪婪)

Galaxy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Submission(s): 556    Accepted Submission(s): 127 Special Judge Problem Description Good news for us: to release the financial pressure, the government

leetcode 343. Integer Break(dp或数学推导)

Given a positive integer n, break it into the sum of at least two positive integers and maximize the product of those integers. Return the maximum product you can get. For example, given n = 2, return 1 (2 = 1 + 1); given n = 10, return 36 (10 = 3 +

借One-Class-SVM回顾SMO在SVM中的数学推导--记录毕业论文5

上篇记录了一些决策树算法,这篇是借OC-SVM填回SMO在SVM中的数学推导这个坑. 参考文献: http://research.microsoft.com/pubs/69644/tr-98-14.pdf https://inst.eecs.berkeley.edu/~ee227a/fa10/login/l_dual_strong.html https://inst.eecs.berkeley.edu/~ee127a/book/login/l_sdual_slater.html http://w

HDU 5073 Galaxy(Anshan 2014)(数学推导,贪心)

Galaxy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Submission(s): 556    Accepted Submission(s): 127 Special Judge Problem Description Good news for us: to release the financial pressure, the government

最大熵模型中的数学推导

最大熵模型中的数学推导 查看原文,点击这里 0 引言 写完SVM之后,一直想继续写机器学习的系列,无奈一直时间不稳定且对各个模型算法的理解尚不够,所以导致迟迟未动笔.无独有偶,重写KMP得益于今年4月个人组织的算法班,而动笔继续写这个机器学习系列,正得益于今年10月组织的机器学习班. 10月26日机器学习班第6次课,身为讲师之一的邹博讲最大熵模型,他从熵的概念,讲到为何要最大熵.最大熵的推导,以及求解参数的IIS方法,整个过程讲得非常流畅,特别是其中的数学推导.晚上我把他的PPT 在微博上公开分

时域和频域变换之---傅里叶级数的数学推导

废话不多说先列提纲: 0.概述-需求分析-功能描述-受限和缺点改进+知识点预备 1.泰勒级数和傅里叶级数的本质区别,泰勒展开 2.  函数投影和向量正交 3.两个不变函数求导是本身e^x,sinx,cosx也是为什么要傅里叶转换的原因! 4.傅里叶技术推到过程 5.附录参考资料 0.有些时候,尤其是在图像处理中,矩阵运算数据量太大,特征提取量多,此时可以通过时域转频域来减少计算量,而且此转换不会损失数据完整性. 时域转频域的方法有周期函数用傅里叶技术,非周期函数(没有间断点的函数)用傅里叶转换,

Codeforces Round #360 (Div. 2) D 数学推导 E dp

Codeforces Round #360 (Div. 2) A  == B  水,但记一下: 第 n 个长度为偶数的回文数是  n+reverse(n). C    dfs 01染色,水 #include<bits/stdc++.h> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define rep(i,a,b) for (int i=a; i<=b; ++i