IIS(Inter-IC Sound)由飞利浦公司开发,是一种常用的音频设备接口,主要用于CD、MD、MP3等设备。
s3c2440一共有5个引脚用于IIS:IISDO、IISDI、IISSCLK、IISLRCK和CDCLK。前两个引脚用于数字音频信号的输出和输入,另外三个引脚都与音频信号的频率有关,可
见要用好IIS,就要把信号频率设置正确,IIS只负责数字音频信号的传输,而要真正实现音频信号的放、录,还需要额外的处理芯片(在这里,我们使用的是UDA1341)。
IISSCLK为串行时钟,这条线路在 codec 芯片 uda134x 内部是BCK也就是 bit clock input。
每一个时钟信号传送一位音频信号
因此IISSCLK的频率=声道数×采样频率×采样位数,如采样频率fs为44.1kHz,采样的位数为16位,声道数2个(左、右两个声道),则IISSCLK的频率=32fs=1411.2kHz。
IISLRCK为帧时钟,用于切换左、右声道,如IISLRCK为高电平表示正在传输的是左声道数据,为低电平表示正在传输的是右声道数据,因此IISLRCK的频率应该正好等于
采样频率fs。从上面两幅图可以清除的看出来。
CDCLK 也就是 uda134x 内部的sysclk 在 uda134芯片手册可以设置为system clock 256fs , 384fs or 512fs。 在s3c2440里面只能设置成256fs或384fs。这个引脚为该芯
片提供系统同步时钟,即编解码时钟,主要用于音频的A/D、D/A采样时的采样时钟。
通过以上分析可以发现,采样频率fs对频率的设置至关重要。而fs不是任意设置的,对于特定的音频数据这个值是固定的,而设置不同的几个固定的值,如8kHz、16kHz、22.05kHz、44.1kHz、48kHz、96kHz等。常见的wav 文件都是 44.1khz。
为了使系统得到以fs为基数的各类时钟信号,就要重新调整系统时钟。s3c2440用于IIS的时钟源有PCLK和MPLLin,我们这里选择PCLK作为IIS的时钟源。PCLK经过两个
预分频器处理后分别得到IISSCLK、IISLRCK和CDCLK(预分频器A得到IISSCLK、IISLRCK,预分频器B得到CDCLK)。
寄存器IISPSR是IIS预分频器寄存器,5~9位是预分频器A,0~4位是预分频器B,一般来说,这两个预分频器的值N相等,即只要知道一个,另一个也就知道,而这里我们
是通过CDCLK来计算预分频器B的值N的,即 CDCLK= PCLK / (N+1)。
注意在整个寄存器组里面没有直接设置fs,因为PCLK是已经设置好的,假如取值400Mhz,再通过这里的N 得到CDCLK, 而CDCLK 和fs关系也是通过设置IISMOD寄存器
得到。所以fs也就确定了,然后 IISSCLK 也可以通过 IISMOD 寄存器设置得到。如果直接用预分频器A的N值和PCLK来计算IISSCLK和IISLRCK似乎没有给出一个方式。
当 fs=44.1khz 的时候CDCLK=384fs=16.9344MHz,对于PCLK 有很多取值,按照最小误差的原则可以算出
MPLLCON = (150<<12) | (5<<4) | 0; 分频数 N = 3
此时 CDCLK = 16.92857 误差也算比较小的了。
另外在 官方给出的 2440test 裸机文件中也有一组数值:
MPLLCON = (229<<12)|(5<<4)|1 N = 2<<5 PCLK = 406.2857/8; CDCLK = 16.92857
如果使用常用的频率数值PCLK=50Mhz,此时取 N = 2,CDCLK=16.666Mhz 有些误差,但是通过我的测试音质变化几乎听不出来。因此这里就选择这一组了。
另外上面的2组都会导致 FCLK > 400Mhz,会不会导致cpu不稳定?
IISCON 和 IISMOD 寄存器每个位含义如下所示:
对于处理器和 uda134x 通信,正常的音频传输是通过IIS 来进行的,上面已经说了。还要配置 uda134x 内部寄存器,uda134x 支持I2C 和L3总线模式等模式配置,记得以
前在mips 架构上 是通过I2c 寄存器来设置的,这里我们选择 L3总线来设置。
由于s3c2440不具备L3总线接口,因此我们是用三个通用IO口来模拟L3,从而实现L3总线的传输。UDA1341有两种模式:地址模式和数据传输模式。
地址模式表示传输的是地址信息,它的高6位永远是000101,低两位表示的是传输的模式,是状态模式、数据0模式还是数据1模式,其中状态模式主要用于配置UDA1341
的各类初始状态,数据模式主要用于改善音频输入、输出的效果。地址模式和数据模式主要通过 L3MODE 线来区分。
l3 线 数据写 模式代码如下:
codec 配置 代码如下(与上面的时序图对应):
//L3总线接口的写函数 //输入参数data为要写入的数据 //输入参数address,为1表示地址模式,为0表示数据传输模式 static void WriteL3(byte data,byte address) { int i,j; if(address == 1) rGPBDAT = (rGPBDAT & ~(L3D | L3M | L3C)) | L3C; //L3D=L, L3M=L(地址模式), L3C=H else rGPBDAT = (rGPBDAT & ~(L3D | L3M | L3C)) | (L3C | L3M); //L3M=H(数据传输模式) for(i=0;i<10;i++) ; //等待一段时间 //并行数据转串行数据输出,以低位在前、高位在后的顺序 for(i=0;i<8;i++) { if(data & 0x1) // H { rGPBDAT &= ~L3C; //L3C=L rGPBDAT |= L3D; //L3D=H for(j=0;j<5;j++) ; //等待一段时间 rGPBDAT |= L3C; //L3C=H rGPBDAT |= L3D; //L3D=H for(j=0;j<5;j++) ; //等待一段时间 } else // L { rGPBDAT &= ~L3C; //L3C=L rGPBDAT &= ~L3D; //L3D=L for(j=0;j<5;j++) ; //等待一段时间 rGPBDAT |= L3C; //L3C=H rGPBDAT &= ~L3D; //L3D=L for(j=0;j<5;j++) ; //等待一段时间 } data >>= 1; } rGPBDAT = (rGPBDAT & ~(L3D | L3M | L3C)) | (L3C | L3M); //L3M=H,L3C=H }
//配置UDA1341 WriteL3(0x14 + 2,1); //状态模式(000101xx+10) WriteL3(0x60,0); //0,1,10, 000,0 : 状态0,复位 WriteL3(0x14 + 2,1); //状态模式 (000101xx+10) WriteL3(0x10,0); //0,0,01, 000,0 : 状态0, 384fs,IIS,no DC-filtering WriteL3(0x14 + 2,1); //状态模式 (000101xx+10) WriteL3(0xc1,0); //1,0,0,0, 0,0,01:状态1,
上面设置codec 寄存器含义要从datasheet 里面找到解释 比如说 WriteL3(0xc1,0); 0xc1 转换成二进制就是:
1 1 0 0 0 0 0 1b
上面简单介绍了IIS 音频播放各种配置,其实对于录音也要配置频率,跟相应的codec寄存器,这里实现了录制一段音频数据,然后再播出的功能。我们用 key来控
制录、放音:当按键 1的时候播放储存音频, 2 的时候 录音,3的时候播放录制音频。
这个可以参考以前的博文 qemu模拟alsa声卡 制作一个wav 文件,然后再把wav文件转换成c数组这一步可以用winhex完成:首先打开需要提取的wav文件,然后再在数
据部分的开始处右键点击“Beginning of Block”,在数据结束部分右键点击“End of block”,这时就选中了所需的数据。然后右键点击“Edit”->"Copy block"->"C source",这时
数据就以unsigned char数组的形式复制到了剪贴板上。接下来新建一个文本文件粘贴进去就可以了。粘贴进去你会发现,xinhex已经帮你定义好了数组,可以直接用到c
代码中。相当人性化,对于前面的bmp位图制作数组也可以用这种方式。
代码在我的 github 中
参考:
blog.csdn.net/zhaocj/article/details/5570424
s3c2440文档