对全概率公式和贝叶斯公式的理解

对全概率公式和贝叶斯公式的理解

我该怎么来理解这2个公式呢?打个比方,假设学校的奖学金都采取申请制度,只有满足一定的条件你才能拿到这比奖学金。那么有哪些原因能够使你有可能拿到奖学金呢?1、三好学生,拿到奖学金的概率是p(A1)=0.3。 2、四好学生,拿到奖学金的概率是p(A2)=0.4。3、五好学生,拿到奖学金的概率是p(A3)=0.5。4、六好学生,拿到奖学金的概率是p(A4)=0.6。这些学生只能是三好四好五好六好学生种的一种,不能跨种类。这个学校学生是三好学生的概率是p(B1)=0.4,四好学生的概率是p(B2)=0.3,五好学生的概率是p(B3)=0.2,六好学生的概率是p(B4)=0.1。现在问题出来了,一个学生能够拿到奖学金的概率是多少?

慢慢来分析,导致一个学生拿到奖学金的方式有哪些?这个学生是三好学生,刚好他又凭借三好学生的身份申请到了奖学金p1=p(A1)*p(B1|A1)=0.4*0.3=0.12;这个学生是四好学生,刚好凭借他四好学生的身份拿到了奖学金,p2=p(A2)*p(B2|A2)=0.3*0.4=0.12;这个学生是五好学生,刚好凭借他五好学生的身份拿到奖学金,p3=p(A3)*p(B3|A3)=0.2*0.5=0.10;这个学生是六好学生,刚好凭借他六好学生的身份拿到了奖学金,p4=p(A4)*p(B4|A4)=0.1*0.6=0.06。四种方式都能导致一个学生拿到奖学金,那么拿到奖学金的概率为p=p1+p2+p3+p4=0.4.所以这么理解全概率公式:导致一个事件发生的原因有很多种(各种原因互斥),那么这个事件发生的概率就是每种原因引起该事件发生的概率的总和。

一个学生已经拿到了奖学金,这个学生是三好学生的概率是多少?p=p1/(p1+p2+p3+p4)=0.3。怎么理解呢?一个事件已经发生了,有很多原因都能导致这个事件发生。那么其中的一种原因导致该事件发生的概率是多少?这就是贝叶斯概率公式解决的问题。就正如一本书现在已经被别人借走了(事件已经发生),已知只有可能是张三,李四,王五这3个人借走(事件发生的所有原因)。那么这本书被张三借走的概率会是多大呢?

现在是不是已经理解了这2个公式呢。

时间: 2024-09-29 21:55:19

对全概率公式和贝叶斯公式的理解的相关文章

朴素贝叶斯分类算法:对贝叶斯公式的理解

为了完成自己的毕业论文,不得不接触这个朴素贝叶斯分类算法...真是惭愧啊(快毕业了才学这个...还初识) 哈哈,不过只要肯学什么时候都不会晚 要想完全理解这个算法,必须先去百度一下 原来朴素贝叶斯分类算法是借用到了贝叶斯定理,那什么是贝叶斯定理呢...不多BB, 先看一看什么是条件概率:P(A|B)=P(AB)/P(B) 其中P(A|B)指的是在B已经发生的情况下A发生的概率.而这个概率是由A和B同时发生的概率除以B发生的概率.点解???这是我第一次看到这个公式后的反应 当我看完这张图后,就差不

全概率公式和贝叶斯公式

全概率公式: 贝叶斯公式:

条件概率、全概率公式与贝叶斯公式

  条件概率.全概率公式与贝叶斯公式(转载) 一.背景 一个随机事件的概率,确切地说,是指在某些给定的条件下,事件发生的可能性大小的度量.但如果给定的条件发生变化之后,该事件的概率一般也随之变化.于是,人们自然提出:如果增加某个条件之后,事件的概率会怎样变化的?它与原来的概率之间有什么关系?显然这类现象是常有的. [例1] 设有一群共人,其中个女性,个是色盲患者. 个色盲患者中女性占个. 如果={从中任选一个是色盲}, ={从中任选一个是女性},此时, .如果对选取规则附加条件:只在女性中任选一

全概率公式与贝叶斯公式(一)

一.条件概率公式 举个例子,比如让你背对着一个人,让你猜猜背后这个人是女孩的概率是多少? 直接猜测,肯定是只有50%的概率,假如现在告诉你背后这个人是个长头发,那么女的概率就变为90%. 所以条件概率的意义就是,当给定条件发生变化后,会导致事件发生的可能性发生变化. 条件概率由文氏图出发,比较容易理解: 表示B发生后A发生的概率,由上图可以看出B发生后,A再发生的概率就是,因此: 由: 得: 这就是条件概率公式. 假如事件A与B相互独立,那么: 注: 相互独立:表示两个事件发生互不影响.而互斥:

机器学习基础系列--先验概率 后验概率 似然函数 最大似然估计(MLE) 最大后验概率(MAE) 以及贝叶斯公式的理解

目录 机器学习基础 1. 概率和统计 2. 先验概率 3. 后验概率 4. 似然函数 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率(MAE)-贝叶斯公式 总结:先验概率 后验概率以及似然函数的关系 机器学习基础 1. 概率和统计 概率(probabilty)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反. 顾名思义: 概率研究的问题是,已知一个模型和参数,怎么去预测这个模型产生的结果的特性(例如均值,方差,协方差等等). 统计研究的问题则相

贝叶斯公式的理解方式

贝叶斯公式是怎么来的? 我们还是使用 wikipedia 上的一个例子: 一所学校里面有 60% 的男生,40% 的女生.男生总是穿长裤,女生则一半穿长裤一半穿裙子.有了这些信息之后我们可以容易地计算“随机选取一个学生,他(她)穿长裤的概率和穿裙子的概率是多大”,这个就是前面说的“正向概率”的计算.然而,假设你走在校园中,迎面走来一个穿长裤的学生(很不幸的是你高度近似,你只看得见他(她)穿的是否长裤,而无法确定他(她)的性别),你能够推断出他(她)是男生的概率是多大吗? 一些认知科学的研究表明(

【机器学习基本理论】详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

https://mp.csdn.net/postedit/81664644 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们. 下文将详细说明MLE和MAP的思路与区别.先讲解MLE的相应知识. 但别急,我们先从概率和统计的区别讲起. 1概率和统计是一个东西吗?   概率(probabilt

全概率公式、贝叶斯公式推导过程

(1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式: 2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...An-1) > 0 时,有: P(A1A2...An-1An)=P(A1)P(A2|A1)P(A3|A1A2)...P(An|A

全概率公式、贝叶斯公式(二)

(1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式: 2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...An-1) > 0 时,有: P(A1A2...An-1An)=P(A1)P(A2|A1)P(A3|A1A2)...P(An|A