Hadoop中map数的计算

转载▼

Hadoop中在计算一个JOB需要的map数之前首先要计算分片的大小。计算分片大小的公式是:

goalSize = totalSize / mapred.map.tasks

minSize = max {mapred.min.split.size, minSplitSize}

splitSize = max (minSize, min(goalSize, dfs.block.size))

totalSize是一个JOB的所有map总的输入大小,即Map input bytes。参数mapred.map.tasks的默认值是2,我们可以更改这个参数的值。计算好了goalSize之后还要确定上限和下限。

下限是max {mapred.min.split.size, minSplitSize} 。参数mapred.min.split.size的默认值为1个字节,minSplitSize随着File Format的不同而不同。

上限是dfs.block.size,它的默认值是64兆。

举几个例子,例如Map input bytes是100兆,mapred.map.tasks默认值为2,那么分片大小就是50兆;如果我们把mapred.map.tasks改成1,那分片大小就变成了64兆。

计算好了分片大小之后接下来计算map数。Map数的计算是以文件为单位的,针对每一个文件做一个循环:

1.   文件大小/splitsize>1.1,创建一个split,这个split的大小=splitsize,文件剩余大小=文件大小-splitsize

2.   文件剩余大小/splitsize<1.1,剩余的部分作为一个split

举几个例子:

1.   input只有一个文件,大小为100M,splitsize=blocksize,则map数为2,第一个map处理的分片为64M,第二个为36M

2.   input只有一个文件,大小为65M,splitsize=blocksize,则map数为1,处理的分片大小为65M (因为65/64<1.1)

3.   input只有一个文件,大小为129M,splitsize=blocksize,则map数为2,第一个map处理的分片为64M,第二个为65M

4.   input有两个文件,大小为100M和20M,splitsize=blocksize,则map数为3,第一个文件分为两个map,第一个map处理的分片为64M,第二个为36M,第二个文件分为一个map,处理的分片大小为20M

5.   input有10个文件,每个大小10M,splitsize=blocksize,则map数为10,每个map处理的分片大小为10M

再看2个更特殊的例子:

1.   输入文件有2个,分别为40M和20M,dfs.block.size = 64M, mapred.map.tasks采用默认值2。那么splitSize = 30M ,map数实际为3,第一个文件分为2个map,第一个map处理的分片大小为30M,第二个map为10M;第二个文件分为1个map,大小为20M

2.   输入文件有2个,分别为40M和20M,dfs.block.size = 64M, mapred.map.tasks手工设置为1。

那么splitSize = 60M ,map数实际为2,第一个文件分为1个map,处理的分片大小为40M;第二个文件分为1个map,大小为20M

通过这2个特殊的例子可以看到mapred.map.tasks并不是设置的越大,JOB执行的效率就越高。同时,Hadoop在处理小文件时效率也会变差。

根据分片与map数的计算方法可以得出结论,一个map处理的分片最大不超过dfs.block.size * 1.1 ,默认情况下是70.4兆。但是有2个特例:

1.   Hive中合并小文件的map only JOB,此JOB只会有一个或很少的几个map。

2.   输入文件格式为压缩的Text File,因为压缩的文本格式不知道如何拆分,所以也只能用一个map。

时间: 2024-10-27 02:15:04

Hadoop中map数的计算的相关文章

hadoop中map和reduce的数量设置问题

转载http://my.oschina.net/Chanthon/blog/150500 map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败.所以用户在提交map/re

mapreduce中map数的测试

默认的map数是有逻辑的split的数量决定的,根据源码切片大小的计算公式:Math.max(minSize, Math.min(maxSize, blockSize)): 其中: minsize:默认值:1 配置参数: mapreduce.input.fileinputformat.split.minsize maxsize:默认值:Long.MAXValue 配置参数:mapreduce.input.fileinputformat.split.maxsize blocksize:值为hdfs

Hive参数层面优化之一控制Map数

1.Map个数的决定因素 通常情况下,作业会通过input文件产生一个或者多个map数: Map数主要的决定因素有: input总的文件个数,input文件的大小和集群中设置的block的大小(在hive中可以通过set dfs.block.size命令查看,该参数不能自定义修改): 文件块数拆分原则:如果文件大于块大小(128M),那么拆分:如果小于,则把该文件当成一个块. 举例一: 假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和

fpga中有符号数的计算

在fpga设计中,所有的算数运算符都是按照无符号数进行的.最近用FPGA做了有符号的计算,来记录一下 1.如果要完成有符号数计算,对于加.减操作通过补码处理即可用无符号加法完成.不过在计算的时候要考虑位数的限制,不管在做加法还是减法,结果的位数要比原来的数据多出一位, 这样计算的时候才不会出现量程的错误. example1: module signed_yz( input clk,rst_n, input signed [7:0]data, input signed [7:0]datb, out

hive优化之------控制hive任务中的map数和reduce数

.    控制hive任务中的map数:  1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.    举例: a)    假设input目录下有1个文件a,大小为780M,那么Hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个ma

hive优化----控制hive中的map数

1. 通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2. 举例:a) 假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数b) 假设input目录下有3个文件a,b,c,大小分别为1

【Hadoop】三句话告诉你 mapreduce 中MAP进程的数量怎么控制?

1.果断先上结论 1.如果想增加map个数,则设置mapred.map.tasks 为一个较大的值. 2.如果想减小map个数,则设置mapred.min.split.size 为一个较大的值. 3.如果输入中有很多小文件,依然想减少map个数,则需要将小文件merger为大文件,然后使用准则2. 2.原理与分析过程 看了很多博客,感觉没有一个说的很清楚,所以我来整理一下. 先看一下这个图 输入分片(Input Split):在进行map计算之前,mapreduce会根据输入文件计算输入分片(i

【转】hive优化之--控制hive任务中的map数和reduce数

一.    控制hive任务中的map数:  1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.    举例: a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个m

hive优化之——控制hive任务中的map数和reduce数

一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.    举例:a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数