Framebuffer 驱动学习总结(二)---- Framebuffer模块初始化

---恢复内容开始---

Framebuffer模块初始化过程:--driver\video\fbmem.c

1、  初始化Framebuffer

FrameBuffer驱动是以模块的形式注册到系统中,在模块初始化时,创建FrameBuffer对应的设备文件及proc文件,并注册FrameBuffer设备操作接口函数fb_fops。

static int __init  fbmem_init(void)
{
    proc_create("fb", 0, NULL, &fb_proc_fops);///向 proc 文件系统报告驱动状态和参数
    if (register_chrdev(FB_MAJOR,"fb",&fb_fops))///注册字符设备驱动,主设备号是29
        printk("unable to get major %d for fb devs\n", FB_MAJOR);
    fb_class = class_create(THIS_MODULE, "graphics");///创建 /sys/class/graphics 设备类,配合 mdev生成设备文件
    if (IS_ERR(fb_class)) {
        printk(KERN_WARNING "Unable to create fb class; errno = %ld\n", PTR_ERR(fb_class));
        fb_class = NULL;
    }
    return 0;
}

Framebuffer作为一个子系统,在fbmem_init中通过register_chrdev接口向系统注册一个主设备号位29的字符设备驱动。通过class_create创建graphics设备类,配合mdev机制生成供用户访问的设备文件(位于/dev目录)。

2、 Framebuffer设备驱动的接口集fb_fops的定义为:

static const struct file_operations fb_fops = {
    .owner =    THIS_MODULE,
    .read =        fb_read,
    .write =    fb_write,//二次拷贝
    .unlocked_ioctl = fb_ioctl,
#ifdef CONFIG_COMPAT
    .compat_ioctl = fb_compat_ioctl,
#endif
    .mmap =        fb_mmap,///映射,一次拷贝
    .open =        fb_open,
    .release =    fb_release,
#ifdef HAVE_ARCH_FB_UNMAPPED_AREA
    .get_unmapped_area = get_fb_unmapped_area,
#endif
#ifdef CONFIG_FB_DEFERRED_IO
    .fsync =    fb_deferred_io_fsync,
#endif
    .llseek =    default_llseek,
};

在linux设备驱动中,所有的显示缓存设备均由framebuffer子系统内部管理,即linux设备驱动框架只认识一个主设备号为29的framebuffer设备。应用层所有针对显示缓存(最多32个)的访问均会推送给fb_fops进行进一步分发操作。

3、 注册Framebuffer

linux 提供了register_framebuffer()和unregister_framebuffer()函数分别作为注册和注销帧缓冲设备,这两个函数都接受fb_info指针为参数,原型为:

int register_framebuffer(struct fb_info  *fb_info);

int Unregister_framebuffer(struct fb_info  *fb_info);

对于register_framebuffer()而言,如果注册的帧缓冲设备超过了FB_MAX(目前定义为32),则返回为-ENXIO,注册成功则返回为0。

int register_framebuffer(struct fb_info *fb_info)
{
    int ret;

    mutex_lock(&registration_lock);
    ret = do_register_framebuffer(fb_info);
    mutex_unlock(&registration_lock);

    return ret;
}
EXPORT_SYMBOL(register_framebuffer);// 在内核的启动过程会被调用,以便执行注册帧缓冲区硬件设备的操作
static int do_register_framebuffer(struct fb_info *fb_info)
{
    int i, ret;
    struct fb_event event;
    struct fb_videomode mode;

    if (fb_check_foreignness(fb_info))
        return -ENOSYS;

    ret = do_remove_conflicting_framebuffers(fb_info->apertures,
                         fb_info->fix.id,
                         fb_is_primary_device(fb_info));
    if (ret)
        return ret;

    if (num_registered_fb == FB_MAX)//如果注册的帧缓冲设备超过了FB_MAX(目前定义为32),则返回为-ENXIO,注册成功则返回为0。
        return -ENXIO;

    num_registered_fb++;///已经注册了的帧缓冲区硬件设备个数
    for (i = 0 ; i < FB_MAX; i++)
        if (!registered_fb[i])///registered_fb[i]保存所有已经注册了的帧缓冲区硬件设备
            break;
    fb_info->node = i;
    atomic_set(&fb_info->count, 1);
    mutex_init(&fb_info->lock);
    mutex_init(&fb_info->mm_lock);

    fb_info->dev = device_create(fb_class, fb_info->device,///在/sys/grapics/下创建 fbx设备,用于设备文件的创建
                     MKDEV(FB_MAJOR, i), NULL, "fb%d", i);
    if (IS_ERR(fb_info->dev)) {
        /* Not fatal */
        printk(KERN_WARNING "Unable to create device for framebuffer %d; errno = %ld\n", i, PTR_ERR(fb_info->dev));
        fb_info->dev = NULL;
    } else
        fb_init_device(fb_info);

    if (fb_info->pixmap.addr == NULL) {
        fb_info->pixmap.addr = kmalloc(FBPIXMAPSIZE, GFP_KERNEL);
        if (fb_info->pixmap.addr) {
            fb_info->pixmap.size = FBPIXMAPSIZE;
            fb_info->pixmap.buf_align = 1;
            fb_info->pixmap.scan_align = 1;
            fb_info->pixmap.access_align = 32;
            fb_info->pixmap.flags = FB_PIXMAP_DEFAULT;
        }
    }
    fb_info->pixmap.offset = 0;

    if (!fb_info->pixmap.blit_x)
        fb_info->pixmap.blit_x = ~(u32)0;

    if (!fb_info->pixmap.blit_y)
        fb_info->pixmap.blit_y = ~(u32)0;

    if (!fb_info->modelist.prev || !fb_info->modelist.next)
        INIT_LIST_HEAD(&fb_info->modelist);

    if (fb_info->skip_vt_switch)
        pm_vt_switch_required(fb_info->dev, false);
    else
        pm_vt_switch_required(fb_info->dev, true);

    fb_var_to_videomode(&mode, &fb_info->var);
    fb_add_videomode(&mode, &fb_info->modelist);
    registered_fb[i] = fb_info;

    event.info = fb_info;
    console_lock();
    if (!lock_fb_info(fb_info)) {
        console_unlock();
        return -ENODEV;
    }

    fb_notifier_call_chain(FB_EVENT_FB_REGISTERED, &event);///通知帧缓冲区控制台,有一个新的帧缓冲区设备被注册到内核中来了
    unlock_fb_info(fb_info);
    console_unlock();
    return 0;
}

每个从设备都需要传递一个fb_info的数据结构指针,其即代表单个显示缓存设备。从中,可以看到fb_info最终会存储到全局数组struct fb_info*registered_fb[FB_MAX]中,FB_MAX是32,从这里我们也可以看出,framebuffer最多支持32个从设备。另外,每个从设备注册还会在/sys/class/graphics/设备类中创建一个设备,最终由mdev在/dev/目录中生成对应的设备文件。假设M个从设备调用register_framebuffer接口,即会在/dev中生成M个设备文件,如/dev/fb0、/dev/fb1、/dev/fb2等等。这M个设备的主设备号都是29,从设备则是0、1、2等等。

每一个被注册的帧缓冲区硬件设备在/dev/graphics目录下都有一个对应的设备文件fb<minor>,其中,<minor>表示一个从设备号。例如,第一个被注册的帧缓冲区硬件设备在/dev/graphics目录下都有一个对应的设备文件fb0。用户空间的应用程序通过这个设备文件就可以操作帧缓冲区硬件设备了,即将要显示的画面渲染到帧缓冲区硬件设备上去。

帧缓冲区控制台在内核中对应的驱动程序模块为fbcon:  (drivers\video\console\Fbcon.c)

初始化:

static struct notifier_block fbcon_event_notifier = {
    .notifier_call    = fbcon_event_notify,
};
......
static int __init fb_console_init(void)//帧缓冲区控制台初始化
{
    int i;

    console_lock();
    fb_register_client(&fbcon_event_notifier);//调用fb_register_client来监听帧缓冲区硬件设备的注册事件,fbcon_event_notifier--->实现
    fbcon_device = device_create(fb_class, NULL, MKDEV(0, 0), NULL,
                     "fbcon");

    if (IS_ERR(fbcon_device)) {
        printk(KERN_WARNING "Unable to create device "
               "for fbcon; errno = %ld\n",
               PTR_ERR(fbcon_device));
        fbcon_device = NULL;
    } else
        fbcon_init_device();

    for (i = 0; i < MAX_NR_CONSOLES; i++)
        con2fb_map[i] = -1;

    console_unlock();
    fbcon_start();
    return 0;
}

这个函数除了会调用函数device_create来创建一个类别为graphics的设备fbcon之外,还会调用函数fb_register_client来监听帧缓冲区硬件设备的注册事件,这是由函数fbcon_event_notify来实现的,如下所示:

static int fbcon_event_notify(struct notifier_block *self,
                  unsigned long action, void *data)
{
    struct fb_event *event = data;
    struct fb_info *info = event->info;
    struct fb_videomode *mode;
    struct fb_con2fbmap *con2fb;
    struct fb_blit_caps *caps;
    int idx, ret = 0;

    switch(action) {

        ......

    case FB_EVENT_FB_REGISTERED:
        ret = fbcon_fb_registered(info);///---> 帧缓冲区硬件设备的注册事件最终是由函数fbcon_fb_registered来处理的
        break;

        .......
    }
done:
    return ret;
}        

帧缓冲区硬件设备的注册事件最终是由函数fbcon_fb_registered来处理的,它的实现如下所示:

static int fbcon_fb_registered(struct fb_info *info)
{
    int ret = 0, i, idx;

    idx = info->node;
    fbcon_select_primary(info);///检查当前注册的帧缓冲区硬件设备是否是一个主帧缓冲区硬件设备,如果是的话,那么就将它的信息记录下来

    if (info_idx == -1) {///如果是的话,那么就将它的信息记录下来
        for (i = first_fb_vc; i <= last_fb_vc; i++) {
            if (con2fb_map_boot[i] == idx) {
                info_idx = idx;
                break;
            }
        }

        if (info_idx != -1)
            ret = do_fbcon_takeover(1);
    } else {
        for (i = first_fb_vc; i <= last_fb_vc; i++) {
            if (con2fb_map_boot[i] == idx)
                set_con2fb_map(i, idx, 0);
        }
    }

    return ret;
}

函数fbcon_select_primary用来检查当前注册的帧缓冲区硬件设备是否是一个主帧缓冲区硬件设备。如果是的话,那么就将它的信息记录下来。这个函数只有当指定了CONFIG_FRAMEBUFFER_CONSOLE_DETECT_PRIMARY编译选项时才有效,否则的话,它是一个空函数。

在Linux内核中,每一个控制台和每一个帧缓冲区硬件设备都有一个从0开始的编号,它们的初始对应关系保存在全局数组con2fb_map_boot中。控制台和帧缓冲区硬件设备的初始对应关系是可以通过设置内核启动参数来初始化的。在模块fbcon中,还有另外一个全局数组con2fb_map,也是用来映射控制台和帧缓冲区硬件设备的对应关系,不过它映射的是控制台和帧缓冲区硬件设备的实际对应关系。

---恢复内容结束---

时间: 2024-10-25 17:08:16

Framebuffer 驱动学习总结(二)---- Framebuffer模块初始化的相关文章

Linux Framebuffer驱动框架之二软件架构(未完待续)【转】

本文转载自:http://blog.csdn.net/gqb_driver/article/details/12918547 /************************************************************************************************************************************/ 原创作品,转载时请务必以超链接形式标明文章原始出处:http://blog.csdn.net/gqb66

Framebuffer 驱动学习总结

帧缓冲设备为标准的字符型设备,在Linux中主设备号29,定义在/include/linux/major.h中的FB_MAJOR,次设备号定义帧缓冲的个数,最大允许有32个FrameBuffer,定义在/include/linux/fb.h中的FB_MAX,对应于文件系统下/dev/fb%d设备文件. 我们从上面这幅图看,帧缓冲设备在Linux中也可以看做是一个完整的子系统,大体由fbmem.c和xxxfb.c组成.向上给应用程序提供完善的设备文件操作接口(即对FrameBuffer设备进行re

Linux驱动学习之常用的模块操作命令

1.常用的模块操作命令 (1)lsmod(list module,将模块列表显示),功能是打印出当前内核中已经安装的模块列表 (2)insmod(install module,安装模块),功能是向当前内核中去安装一个模块,用法是insmod xxx.ko (3)modinfo(module information,模块信息),功能是打印出一个内核模块的自带信息.,用法是modinfo xxx.ko,注意要加.ko,也就是说是一个静态的文件形式. (4)rmmod(remove module,卸载

nginx学习(二)——模块指令介绍

nginx.conf 配置文件详解 Nginx 配置文件主要分成四部分:main(全局设置).server(主机设置).upstream(上游服务器设置,主要为反向代理.负载均衡相关配置)和 location(URL匹配特定位置后的设置).main 部分设置的指令影响其他所有部分的设置:server 部分的指令主要用于制定虚拟主机域名.IP 和端口号:upstream 的指令用于设置一系列的后端服务器,设置反向代理及后端服务器的负载均衡:location 部分用于匹配网页位置(比如,根目录“/”

Ok6410裸机驱动学习(二)ARM基础知识

1.ARM工作模式 ARM微处理器支持7种工作模式,分别为: l  用户模式(usr):ARM处理器正常的程序执行状态(Linux用户态程序) l  快速中断模式(fiq):用于高速数据传输或通道处理 l  外部中断模式(irq):用于通用的中断处理 l  管理模式(svc):操作系统使用的保护模式(Linux内核) l  中止模式(abt):当数据或指令预取终止时进入该模式,用于虚拟存储及存储保护 l  未定义指令模式(und):当未定义的指令执行时进入该模式,用于支持硬件协处理器的软件仿真

Linux内核驱动学习(二)----根文件系统的构成 (root filesystem)

1.建立根文件系统目录和文件 1.1创建目录 1.2创建设备文件(命令mknod):必须创建设备文件---consle\null 1.3创建配置文件---复制已有的/etc目录下的文件 1.4添加内核模块 进入Linux内核目录下,(注意,应该先编译内核,即命令make uImage ARCH=arm  CROSS_COMPILE=arm-linux-) 1.4.1.编译内核模块---命令 make modules ARCH=arm CROSS_COMPILE=arm-linux- 1.4.2.

Linux 网卡驱动学习(二)(网络驱动接口小结)

[摘要]前文我们分析了一个虚拟硬件的网络驱动样例.从中我们看到了网络设备的一些接口.事实上网络设备驱动和块设备驱动的功能比較相似,都是发送和接收数据包(数据请求). 当然它们实际是有非常多不同的. 1.引言 首先块设备在/dev文件夹下有设备节点.而网络设备没有这种设备入口. read,write等常规的文件接口在网络设备下也没有意义. 最大的差别在于:块设备仅仅响应内核的数据请求:而网络设备驱动要异步地接收来自外部的数据包.简单地说.块设备驱动是被要求数据传输而网络设备是主动请求数据传输.网络

Linux Framebuffer 驱动框架之一概念介绍及LCD硬件原理【转】

本文转载自:http://blog.csdn.net/liuxd3000/article/details/17464779 一.基本概念 帧缓冲(Framebuffer)是Linux系统为显示设备提供的一个接口,它将显示缓冲区抽象,屏蔽图像硬件的底层差异,允许上层应用程序在图形模式下直接对显示缓冲区进行读写操作.用户不必关心物理显示缓冲区的具体位置及存放方式,这些都是由帧缓冲设备驱动本身来完成.对于帧缓冲设备而言,只要在显示缓冲区与显示点对应的区域写入颜色值,对应的颜色会自动在屏幕上显示,下一小

Linux驱动框架之framebuffer驱动框架

1.什么是framebuffer? (1)framebuffer帧缓冲(一屏幕数据)(简称fb)是linux内核中虚拟出的一个设备,framebuffer向应用层提供一个统一标准接口的显示设备.帧缓冲(framebuffer) 是Linux为显示设备提供的一个接口,把显存抽象后的一种设备,他允许上层应用程序在图形模式下直接对显示缓冲区进行读写操作.这种操作是抽象的,统一的.用 户不必关心物理显存的位置.换页机制等等具体细节.这些都是由Framebuffer设备驱动来完成的. (2)从驱动来看,f