一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布

@copyright 转载请注明出处 http://www.cnblogs.com/chxer/

我们将用整个第二章来研究各种各样的概率分布以及它们的性质。然而,在这里介绍连续变量一种最重要的概率分布是很方便的。这种分布就是正态分布(normal distribution)或者高斯分布(Gaussian distribution)。在其余章节中(事实上在整本书中),我们将会经常用到这种分布。

正态分布是这么定义的:

图像长成这样:

我们待会被数学折磨完后再来了解这些参数的意义。

先来看看正态分布几个性质:全正且归一

好,接下来我们来算一下正态分布的期望以及二阶矩的期望以及方差。

先从简单的一阶期望开始:

然后我们就磨出来了,喜大普奔。

二阶矩似乎道理是一样的。以后再补上吧。

那么我们就把方差求出来了:

现在我们就知道每一个参数的意义了:

μ,被叫做均值(mean),以及σ2,被叫做方差(variance)。方差的平方 根,由σ给定,被叫做标准(standard deviation)。方差的倒数,记作β = 1 ,被叫做精度。

分布的最大值是众数。对于正态分布来说,众数是等于均值的。

我们也对D维向量x的正态分布感兴趣(不包括我),它是这么定义的:

现在假定我们有一个观测的数据集x = (x1, . . . , xN )T ,表示标量变量x的N次观测。注意, 我们使用一个字体不同的x来和向量变量(x1, . . . , xD)T 作区分,后者记作x。我们假定各次观 测是独立地从高分布中抽取的,分布的均值μ和方差σ2未知,我们想根据数据集来确定这 参数。独立地从相同的数据中抽取的数据点被称为独立同分布(independent and identically distributed),通常缩写成i.i.d.。我们已看到两个独立事件的联合概率可以由各个事件的边缘概率的乘积得到。由于我们的数据集x是独立同布的,因此给定μ和σ2,我们可以给出数据集的概率:

我们就得到了正态分布的似然函数。我们取对数就可以得到对数似然函数:

我们分别关于两个参数最大化对数似然函数,就得到了样本均值和样本方差:

  

事实上,我们发现样本均值应该是无偏的,也就是有:

对于样本方差,我们则需要考量。

当数据点的数量N增大时,最大似然解的偏移会变得不太严重,并且在极 限N → ∞的情况下,方差的最大似然解与产生数据的分布的真实方差相等。在实际应用中,只要N 的值不太小,那么偏移的现象不是个大问题。然而,在本书中,我们感兴趣的是带有很多参数的复杂模型。这些模型中,最大似然的偏移问题会更加严重。实际上,我们会看到,最大似然的偏移问题是我们在多项式曲线拟合问题中遇到的过拟合问题的核心。

时间: 2024-12-05 01:36:12

一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布的相关文章

PRML 1: Gaussian Distribution

1. Overview of Machine Learning The information of a random variable in terms of its distribution can be measured as entropy. The maximum entropy configuration for a discrete variable is the uniform distribution, and for a continuous variable is the

The Complex Gaussian Distribution

This is the beginning of my plan. Or this is a manifesto, a motivation for me. Note what I read, good or bad, old or new, Tao or method. Maybe sometimes not care about the formal usage of the language. From the words I write down, may that someday I

UNDERSTANDING THE GAUSSIAN DISTRIBUTION

UNDERSTANDING THE GAUSSIAN DISTRIBUTION Randomness is so present in our reality that we are used to take it for granted. Most of the phenomena which surround us have been generated by random processes. Hence, our brain is very good at recognise these

Gaussian distribution

在读2009年ICCV的paper<Landmark-Based Sparse Color Representations for Color Transfer>中遇到几次 Gaussian distribution(高斯分布),不明觉厉,就查了写来总结下: 高斯分布(Gaussian distribution),其实就是正态分布(Normal distribution),瞬间就不黑线了,概率论中学过的. 一.先粘一段高斯分布的历史: 正态分布是最重要的一种概率分布.正态分布概念是由德国的数学

正态分布(Normal distribution)又名高斯分布(Gaussian distribution)

正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学.物理及project等领域都很重要的概率分布,在统计学的很多方面有着重大的影响力. 若随机变量X服从一个数学期望为μ.标准方差为σ2的高斯分布,记为: X∼N(μ,σ2), 则其概率密度函数为 正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度.因其曲线呈钟形,因此人们又常常称之为钟形曲线.我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布(见右图中绿色曲

绘制Gaussian Distribution曲线的三种方式

在高斯分布中有三个数学符号,先来解释这个三个数学符号的含义,然后再说明这个公式的推导思路和推导方法. 三个符号\(\mu,\sigma,e\)在数学上分别叫做平均值(又称数学期望),标准差,自然数.即: 平均值(又称数学期望):\(\mu\) 标准差:\(\sigma\) 自然数:\(e\) 高斯分布数学公式 \[f(x)=\frac{1}{ \sqrt{2\pi\sigma} } \cdot e^{ \frac{-(x-\mu)^2}{2\sigma^2}}\] 期望(平均数):μ 标准差\(

一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差

@copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 涉及到概率的一个重要的操作是寻找函数的加权平均值.在概率分布p(x)下,函数f(x)的平均值被称为f(x)的期望(expectation),记作E[f].对于一个离散变量,它的定义为: 因此平均值根据x的不同值的相对概率加权.在连续变量的情形下,期望以对应的概率密度的积分的形式表示: 类似的,我们有“条件期望”.无非就是把边缘概率变成条件概率. 在连续变量的情况下,我们把求和改成积分就好了. 如果我

一起啃PRML - 1.2.1 Probability densities

@copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 我们之前一直在讨论“谁取到什么”这样的概率问题,现在我们不妨来研究“谁取到哪个范围内”这样的概率问题. x位于区间(a, b)的概率由下式给出: 由于概率是非负的,并且x的值一定位于实数轴上得某个位置,因此概率密度一定满足下面两个条件: 位于区间(−∞, z)的x的概率由累积分布函数(cumulative distribution function)给出.定义为: 累积分布函数与概率密度函数的关系:

一起啃PRML - 1.2 Probability Theory

@copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in the field of pattern recognition is that of uncertainty. 可以看出概率论在模式识别显然是非常重要的一大块. 读其他书的时候在概率这方面就也很纠结过. 我们也还是通过一个例子来理解一下Probability Theory里面一些重要的概念. Imagine we have two boxes, one red a