1. 要实现" 附近的人" 这功能,然后就研究了下:
(1)首先要做的就是要获取到自己当前位置的经纬度
(2)然后就是上传自己的数据给服务器
(3)服务器经过计算然后把符合项目定义的最大距离的附近的人的数据传到前台
(4)前台通过数据来展示
其中最主要的其实就是经纬度的距离的计算:
源码下载地址: https://github.com/feicien/studydemo
手机端项目:NearByDemo
服务器端项目:NearbyServerDemo
2. 手机端代码讲解:
MainActivity是项目的入口Activity:
1 @Override 2 protected void onCreate(Bundle savedInstanceState) { 3 boolean first = getSharedPreferences( "userinfo", Context.MODE_PRIVATE ).getBoolean( "first", false); 4 if (!first) { 5 Intent intent = new Intent( this, LoginActivity.class ); 6 startActivity(intent); 7 } 8 .... 9 }
(1) 查看附近的人,是需要使用用户信息的,因此在OnCreate方法中先判断用户是不是第一次打开应用,如果是第一次打开应用,跳转到LoginActivity,进行用户信息登记,之后便进入MainActivity。
(2)点击ActionBar上的附近的人,便会显示从服务器获取到的用户信息(目前服务器是把所有用户信息全部返回)
(3)请求网络使用的是Google在IO大会上才推出的Volley.
服务器端是使用Java web编写的。在这里不详细介绍了。计算距离的逻辑是从Android的提供的接口(Location.distanceBetween)中拔来的,应该是最精确的方法了:
下面这个是很精确的方法:
1 public static double computeDistance(double lat1, double lon1, 2 double lat2, double lon2) { 3 // Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf 4 // using the "Inverse Formula" (section 4) 5 int MAXITERS = 20; 6 // Convert lat/long to radians 7 lat1 *= Math.PI / 180.0; 8 lat2 *= Math.PI / 180.0; 9 lon1 *= Math.PI / 180.0; 10 lon2 *= Math.PI / 180.0; 11 double a = 6378137.0; // WGS84 major axis 12 double b = 6356752.3142; // WGS84 semi-major axis 13 double f = (a - b) / a; 14 double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b); 15 double L = lon2 - lon1; 16 double A = 0.0; 17 double U1 = Math.atan((1.0 - f) * Math.tan(lat1)); 18 double U2 = Math.atan((1.0 - f) * Math.tan(lat2)); 19 double cosU1 = Math.cos(U1); 20 double cosU2 = Math.cos(U2); 21 double sinU1 = Math.sin(U1); 22 double sinU2 = Math.sin(U2); 23 double cosU1cosU2 = cosU1 * cosU2; 24 double sinU1sinU2 = sinU1 * sinU2; 25 double sigma = 0.0; 26 double deltaSigma = 0.0; 27 double cosSqAlpha = 0.0; 28 double cos2SM = 0.0; 29 double cosSigma = 0.0; 30 double sinSigma = 0.0; 31 double cosLambda = 0.0; 32 double sinLambda = 0.0; 33 double lambda = L; // initial guess 34 for (int iter = 0; iter <</span> MAXITERS; iter++) { 35 double lambdaOrig = lambda; 36 cosLambda = Math.cos(lambda); 37 sinLambda = Math.sin(lambda); 38 double t1 = cosU2 * sinLambda; 39 double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda; 40 double sinSqSigma = t1 * t1 + t2 * t2; // (14) 41 sinSigma = Math.sqrt(sinSqSigma); 42 cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15) 43 sigma = Math.atan2(sinSigma, cosSigma); // (16) 44 double sinAlpha = (sinSigma == 0) ? 0.0 : 45 cosU1cosU2 * sinLambda / sinSigma; // (17) 46 cosSqAlpha = 1.0 - sinAlpha * sinAlpha; 47 cos2SM = (cosSqAlpha == 0) ? 0.0 : 48 cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18) 49 double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn 50 A = 1 + (uSquared / 16384.0) * // (3) 51 (4096.0 + uSquared * 52 (-768 + uSquared * (320.0 - 175.0 * uSquared))); 53 double B = (uSquared / 1024.0) * // (4) 54 (256.0 + uSquared * 55 (-128.0 + uSquared * (74.0 - 47.0 * uSquared))); 56 double C = (f / 16.0) * 57 cosSqAlpha * 58 (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10) 59 double cos2SMSq = cos2SM * cos2SM; 60 deltaSigma = B * sinSigma * // (6) 61 (cos2SM + (B / 4.0) * 62 (cosSigma * (-1.0 + 2.0 * cos2SMSq) - 63 (B / 6.0) * cos2SM * 64 (-3.0 + 4.0 * sinSigma * sinSigma) * 65 (-3.0 + 4.0 * cos2SMSq))); 66 lambda = L + 67 (1.0 - C) * f * sinAlpha * 68 (sigma + C * sinSigma * 69 (cos2SM + C * cosSigma * 70 (-1.0 + 2.0 * cos2SM * cos2SM))); // (11) 71 double delta = (lambda - lambdaOrig) / lambda; 72 if (Math.abs(delta) <</span> 1.0e-12) { 73 break; 74 } 75 } 76 return b * A * (sigma - deltaSigma); 77 }
还有一个简单方法,比上面精确度要差,如下:
1 public static double getDistance(double lat1,double longt1 , double lat2,double longt2) { 2 double PI = 3.14159265358979323; // 圆周率 3 double R = 6371229; // 地球的半径 4 double x, y, distance; 5 x = (longt2 - longt1) * PI * R * Math.cos(((lat1 + lat2) / 2) * PI / 180) / 180; 6 y = (lat2 - lat1) * PI * R / 180; 7 distance = Math.hypot(x, y); 8 return distance; 9 }
时间: 2024-10-25 14:42:53