1136 A Delayed Palindrome (20 分)

1136 A Delayed Palindrome (20 分)

Consider a positive integer N written in standard notation with k+1 digits a?i?? as a?k???a?1??a?0?? with 0 for all iand a?k??>0. Then N is palindromic if and only if a?i??=a?k−i?? for all i. Zero is written 0 and is also palindromic by definition.

Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )

Given any positive integer, you are supposed to find its paired palindromic number.

Input Specification:

Each input file contains one test case which gives a positive integer no more than 1000 digits.

Output Specification:

For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:

A + B = C

where A is the original number, B is the reversed A, and C is their sum. A starts being the input number, and this process ends until C becomes a palindromic number -- in this case we print in the last line C is a palindromic number.; or if a palindromic number cannot be found in 10 iterations, print Not found in 10 iterations. instead.

Sample Input 1:

97152

Sample Output 1:

97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.

Sample Input 2:

196

Sample Output 2:

196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.

字符串相加,再来个迭代几次就成。

 1 #include <bits/stdc++.h>
 2 #define ll long long int
 3 using namespace std;
 4 string s,st;
 5
 6
 7 string add(string s, string ss){
 8     string st;
 9     int an = 0;
10     for(int i = s.length()-1 ; i >= 0; --i){
11         int x = s[i]-‘0‘;
12         int y = ss[i]-‘0‘;
13         int ans = x+y+an;
14         if(ans < 10){
15             st += ans+‘0‘;
16             an = 0;
17         }else{
18             st += (ans%10) + ‘0‘;
19             an = 1;
20         }
21     }
22     if(an) st += ‘1‘;
23     reverse(st.begin(), st.end());
24     return st;
25 }
26
27
28 bool ishui(string s){
29     for(int i = 0; i < s.length(); i++){
30         if(s[i] != s[s.length() -i - 1])
31             return false;
32     }
33     return true;
34 }
35
36 int main(){
37     cin >> s;
38     st = s;
39     reverse(st.begin(), st.end());
40     int cnt = 10;
41     while(!ishui(s) && cnt--){
42         string ans = add(s,st);
43         cout <<s<<" + "<<st<<" = "<<ans<<endl;
44         s = ans;
45         st = s;
46         reverse(st.begin(), st.end());
47     }
48     if(cnt == -1){
49         cout <<"Not found in 10 iterations."<<endl;
50     }else{
51         cout << s<<" is a palindromic number."<<endl;
52     }
53     return 0;
54 }

原文地址:https://www.cnblogs.com/zllwxm123/p/11296164.html

时间: 2024-11-05 20:31:01

1136 A Delayed Palindrome (20 分)的相关文章

PAT Advanced 1136 A Delayed Palindrome (20分)

Consider a positive integer N written in standard notation with k+1 digits a?i?? as a?k???a?1??a?0?? with 0 for all i and a?k??>0. Then N is palindromic if and only if a?i??=a?k−i?? for all i. Zero is written 0 and is also palindromic by definition.

1136 A Delayed Palindrome (20)

Consider a positive integer N written in standard notation with k+1 digits a~i~ as a~k~...a~1~a~0~ with 0 <= a~i~ < 10 for all i and a~k~ > 0. Then N is palindromic if and only if a~i~ = a~k-i~ for all i. Zero is written 0 and is also palindromic

pat 1136 A Delayed Palindrome(20 分)

1136 A Delayed Palindrome(20 分) Consider a positive integer N written in standard notation with k+1 digits a?i?? as a?k???a?1??a?0?? with 0≤a?i??<10 for all i and a?k??>0. Then N is palindromic if and only if a?i??=a?k?i?? for all i. Zero is written

PAT 1136 A Delayed Palindrome[简单]

1136 A Delayed Palindrome (20 分) Consider a positive integer N written in standard notation with k+1 digits a?i?? as a?k???a?1??a?0?? with 0≤a?i??<10for all i and a?k??>0. Then N is palindromic if and only if a?i??=a?k?i?? for all i. Zero is written

pat 1136 A Delayed Palindrome

Consider a positive integer N written in standard notation with k+1 digits a?i?? as a?k???a?1??a?0?? with 0≤a?i??<10 for all i and a?k??>0. Then N is palindromic if and only if a?i??=a?k?i?? for all i. Zero is written 0 and is also palindromic by de

PTA-C-4-7 统计某类完全平方数 (20分)

4-7 统计某类完全平方数   (20分) 本题要求实现一个函数,判断任一给定整数N是否满足条件:它是完全平方数,又至少有两位数字相同,如144.676等. 函数接口定义: int IsTheNumber ( const int N ); 其中N是用户传入的参数.如果N满足条件,则该函数必须返回1,否则返回0. 裁判测试程序样例: #include <stdio.h> #include <math.h> int IsTheNumber ( const int N ); int ma

PTA 10-排序4 统计工龄 (20分)

题目地址 https://pta.patest.cn/pta/test/15/exam/4/question/721 5-13 统计工龄   (20分) 给定公司NN名员工的工龄,要求按工龄增序输出每个工龄段有多少员工. 输入格式: 输入首先给出正整数NN(\le 10^5≤10?5??),即员工总人数:随后给出NN个整数,即每个员工的工龄,范围在[0, 50]. 输出格式: 按工龄的递增顺序输出每个工龄的员工个数,格式为:"工龄:人数".每项占一行.如果人数为0则不输出该项. 输入样

PTA 邻接表存储图的广度优先遍历(20 分)

6-2 邻接表存储图的广度优先遍历(20 分) 试实现邻接表存储图的广度优先遍历. 函数接口定义: void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) ); 其中LGraph是邻接表存储的图,定义如下: /* 邻接点的定义 */ typedef struct AdjVNode *PtrToAdjVNode; struct AdjVNode{ Vertex AdjV; /* 邻接点下标 */ PtrToAdjVNode Next; /*

6-1 单链表逆转(20 分)

6-1 单链表逆转(20 分) 本题要求实现一个函数,将给定的单链表逆转. 函数接口定义: List Reverse( List L ); 其中List结构定义如下: typedef struct Node *PtrToNode; struct Node { ElementType Data; /* 存储结点数据 */ PtrToNode Next; /* 指向下一个结点的指针 */ }; typedef PtrToNode List; /* 定义单链表类型 */ L是给定单链表,函数Rever