Turing Tree HDU - 3333 (树状数组,离线求区间元素种类数)

After inventing Turing Tree, 3xian always felt boring when solving problems about intervals, because Turing Tree could easily have the solution. As well, wily 3xian made lots of new problems about intervals. So, today, this sick thing happens again...

Now given a sequence of N numbers A1, A2, ..., AN and a number of Queries(i, j) (1≤i≤j≤N). For each Query(i, j), you are to caculate the sum of distinct values in the subsequence Ai, Ai+1, ..., Aj.
给定一个长度为n的序列,给定m个查询,每次查询区间[L,R]范围内不同元素的和。
Input
The first line is an integer T (1 ≤ T ≤ 10), indecating the number of testcases below.
For each case, the input format will be like this:

  • Line 1: N (1 ≤ N ≤ 30,000).
  • Line 2: N integers A1, A2, ..., AN (0 ≤ Ai ≤ 1,000,000,000).
  • Line 3: Q (1 ≤ Q ≤ 100,000), the number of Queries.
  • Next Q lines: each line contains 2 integers i, j representing a Query (1 ≤ i ≤ j ≤ N). 第一个整数T,表示数据组数。
    对于每组数据,第一行一个整数n,表示序列中元素个数。
    第二行n个元素。
    第三行一个整数q,表示询问的组数。
    接下来q行,每行两个整数L和R
    Output
    For each Query, print the sum of distinct values of the specified subsequence in one line.
    对于每个询问,输出结果。
    Sample Input
    2
    3
    1 1 4
    2
    1 2
    2 3
    5
    1 1 2 1 3
    3
    1 5
    2 4
    3 5
    Sample Output
    1
    5
    6
    3
    6

题意:
英文下面有中文翻译
思路:
先把区间信息读进来,然后以右端点排序,然后离线处理每一个区间信息,同时用一个map来维护一个数值x最后一次出现的位置。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <bits/stdc++.h>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 30010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/

int q;
int n;
ll tree[maxn];
int lowbit(int x)
{
    return -x&x;
}
void add(int x,ll val)
{
    while(x<maxn)
    {
        tree[x]+=val;
        x+=lowbit(x);
    }
}
ll ask(int x)
{
    ll res=0;
    while(x)
    {
        res+=tree[x];
        x-=lowbit(x);
    }
    return res;
}
ll a[maxn];
map<ll,int> vis;
struct node
{
    int l,r;
    int id;
}b[100010];

bool cmp(node aa,node bb)
{
    return aa.r<bb.r;
}
bool cmp2(node aa,node bb)
{
    return aa.id<bb.id;
}
ll ans[100010];
int main()
{
    //freopen("D:\\code\\text\\input.txt","r",stdin);
    //freopen("D:\\code\\text\\output.txt","w",stdout);
    gbtb;
    int t;
    cin>>t;
    while(t--)
    {
        MS0(tree);
        vis.clear();
        cin>>n;
        repd(i,1,n)
        {
            cin>>a[i];
        }
        int q;
        cin>>q;
        repd(i,1,q)
        {
            cin>>b[i].l;
            cin>>b[i].r;
            b[i].id=i;
        }
        sort(b+1,b+1+q,cmp);
        int p=1;
        repd(i,1,q)
        {
            while(p<=b[i].r)
            {
                if(vis[a[p]])
                {
                    add(vis[a[p]],-a[p]);
                    add(p,a[p]);
                    vis[a[p]]=p;
                }else
                {
                    vis[a[p]]=p;
                    add(p,a[p]);
                }
                p++;
            }
            ans[b[i].id]=ask(b[i].r)-ask(b[i].l-1);
        }
        sort(b+1,b+1+q,cmp2);
        repd(i,1,q)
        {
            cout<<ans[b[i].id]<<endl;
        }
    }

    return 0;
}

inline void getInt(int* p) {
    char ch;
    do {
        ch = getchar();
    } while (ch == ' ' || ch == '\n');
    if (ch == '-') {
        *p = -(getchar() - '0');
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 - ch + '0';
        }
    }
    else {
        *p = ch - '0';
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 + ch - '0';
        }
    }
}

原文地址:https://www.cnblogs.com/qieqiemin/p/11311859.html

时间: 2024-10-01 22:53:18

Turing Tree HDU - 3333 (树状数组,离线求区间元素种类数)的相关文章

hdu 3333 树状数组+离线处理

http://acm.hdu.edu.cn/showproblem.php?pid=3333 不错的题,想了很久不知道怎么处理,而且答案没看懂,然后找个例子模拟下别人的代码马上懂了---以后看不懂的话就拿个例子模拟下别人的代码 举个例子:1 3 3 5 3 5 查询 a, 2 4 b, 2 5 最初是这么想的:对于a查询,倘若把第二个数第三个数变成1个3,那么到b查询,又出现了两个3,再做处理似乎还是O(n),而且如果先出现2,5查询,后出现2,4查询,那么还需要把删除的数补回来.....o(╯

hdu 4368 树状数组 离线维护

http://acm.hdu.edu.cn/showproblem.php?pid=4638 Problem Description There are n men ,every man has an ID(1..n).their ID is unique. Whose ID is i and i-1 are friends, Whose ID is i and i+1 are friends. These n men stand in line. Now we select an interv

HDU 1394 树状数组+离散化求逆序数

对于求逆序数问题,学会去利用树状数组进行转换求解方式,是很必要的. 一般来说我们求解逆序数,是在给定一串序列里,用循环的方式找到每一个数之前有多少个比它大的数,算法的时间复杂度为o(n2). 那么我们通过树状数组可以明显提高时间效率. 我们可以按照排列的顺序依次将数字放入树状数组中,并依次更新预与之相关联的树状数组元素.那么在将其更新完毕后,我们知道每个数对应的树状数组元素的左边的数肯定比它小,我们在以序列顺序依次更新树状数组时,如果有值在它前面出现,那么它对应的树状数组元素(在这个题目里存放的

hdu 3333(树状数组 + 离散化 + hash)

Turing Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3847    Accepted Submission(s): 1306 Problem Description After inventing Turing Tree, 3xian always felt boring when solving problems a

Inversion (hdu 4911 树状数组 || 归并排序 求逆序对)

Inversion Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 2003    Accepted Submission(s): 787 Problem Description bobo has a sequence a1,a2,-,an. He is allowed to swap two adjacent numbers fo

hdu 3874 树状数组+离线处理

题意: 这和hdu 3333 根本就是一道题   链接:http://blog.csdn.net/u013382399/article/details/45689977 思路: 同hdu 3333 code: #include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #include<vector> #include<string> #inclu

HDU 3333 Turing Tree 树状数组 离线查询

题意: 给你一个数列,然后有n个查询,问你给定区间中不同数字的和是多少. 思路还是比较难想的,起码对于蒟蒻我来说. 将区间按照先右端点,后左端点从小到大排序之后,对于每个查询,我只要维护每个数字出现的最后一次就可以了(这个结论稍微想一下就可以证明是正确的). 然后就是简单的点更新,区间求和问题了- #include <cstdio> #include <cstring> #include <iostream> #include <map> #include

HDU 3333 Turing Tree(树状数组离线处理)

HDU 3333 Turing Tree 题目链接 题意:给定一个数组,每次询问一个区间,求出这个区间不同数字的和 思路:树状数组离线处理,把询问按右端点判序,然后用一个map记录下每个数字最右出现的位置,因为一个数字在最右边出现,左边那些数字等于没用了,利用树状数组进行单点修改区间查询即可 代码: #include <cstdio> #include <cstring> #include <algorithm> #include <map> using n

Necklace HDU - 3874 (线段树/树状数组 + 离线处理)

Necklace HDU - 3874 Mery has a beautiful necklace. The necklace is made up of N magic balls. Each ball has a beautiful value. The balls with the same beautiful value look the same, so if two or more balls have the same beautiful value, we just count